Citation:
Harjinder Singh, Sudesh Kumari, Jitender M. Khurana. A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4[J]. Chinese Chemical Letters,
;2014, 25(10): 1336-1340.
doi:
10.1016/j.cclet.2014.05.014
-
12-Aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives were synthesized by a convenient and environmentally benign procedure involving multicomponent condensation reactions of substituted aromatic aldehydes with 2,7-dihydroxynaphthalene/2-naphthols/2,6-dihydroxynaphthlene and cyclic 1,3-dicarbonyl compounds in task specific acidic ionic liquid [NMP]H2PO4 at 80℃. This protocol has proved to be efficient in terms of good yields, operational simplicity, easy workup, recyclability of reaction medium/catalyst, and short reaction time.
-
-
-
[1]
[1] P. Tundo, P. Anastas, D.S. Black, et al., Synthetic pathways and processes in green chemistry. Introductory overview, Pure Appl. Chem. 72 (2000) 1207-1228.
-
[2]
[2] D.J.C. Constable, C.J. Gonzalez, R.K. Henderson, Perspective on solvent use in the pharmaceutical industry, Org. Process Res. Dev. 11 (2007) 133-137.
-
[3]
[3] D. Reinhardt, F. Ilgen, D. Kralisch, B. König, G. Kreisel, Evaluating the greenness of alternative reaction media, Green Chem. 10 (2008) 1170-1181.
-
[4]
[4] (a) T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071-2083;
-
[5]
(b) P. Wasserscheid, W. Keim, Ionic liquids -new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39 (2000) 3772-3789.
-
[6]
[5] M. Deetlefs, K.R. Seddon, Assessing the greenness of some typical laboratory ionic liquid preparations, Green Chem. 12 (2010) 17-30.
-
[7]
[6] H. Guo, X. Li, J.L. Wang, X.H. Jin, X.F. Lin, Acidic ionic liquid [NMP]H2PO4 as dual solvent-catalyst for synthesis of β-alkoxyketones by the oxa-Michael addition reactions, Tetrahedron 66 (2010) 8300-8303.
-
[8]
[7] (a) A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89;
-
[9]
(b) C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery ‘from xylocain to crixivan', Curr. Med. Chem. 10 (2003) 51-80;
-
[10]
(c) V. Nair, C. Rajesh, A.U. Vinod, et al., Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes, Acc. Chem. Res. 36 (2003) 899-907;
-
[11]
(d) I. Ugi, B. Verner, A. Dmling, The chemistry of isocyanides, their multicomponent reactions and their Libraries, Molecules 8 (2003) 53-66;
-
[12]
(e) J.P. Zhu, Recent developments in the isonitrile-based multicomponent synthesis of heterocycles, Eur. J. Org. Chem. (2003) 1133-1144;
-
[13]
(f) J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Polyethylene glycol and solutions of polyethylene glycol as green reaction media, Green Chem. 7 (2005) 64-82;
-
[14]
(g) Z. Hossaini, F.R. Charati, S. Seyfia, M. Ghambarian, Multicomponent reactions for the synthesis of functionalized 1,4-oxathiane-3-thiones under microwave irradiation in water, Chin. Chem. Lett. 24 (2013) 376-378;
-
[15]
(h) F.R. Charati, Efficient synthesis of functionalized hydroindoles via catalystfree multicomponent reactions of ninhydrin in water, Chin. Chem. Lett. 25 (2014) 169-171.
-
[16]
[8] H. Wang, L. Lu, S. Zhu, Y. Li, W. Cai, The phototoxicity of xanthene derivatives against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae, Curr. Microbiol. 52 (2006) 1-5.
-
[17]
[9] J.L. Vennerstrom, M.T. Makler, C.K. Angerhofer, J.A. Williams, Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines, Antimicrob. Agents Chemother. 39 (1995) 2671-2677.
-
[18]
[10] R. Giri, J.R. Goodell, C.G. Xing, et al., Synthesis and cancer cell cytotoxicity of substituted xanthenes, Bioorg. Med. Chem. 18 (2000) 1456-1463.
-
[19]
[11] K. Chibale, M. Visser, D.V. Schalkwyk, et al., Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents, Tetrahedron 59 (2003) 2289-2296.
-
[20]
[12] B.B. Bhowmik, P. Ganguly, Photophysics of xanthene dyes in surfactant solution, Spectrochim. Acta A 61 (2005) 1997-2003.
-
[21]
[13] C.G. Knight, T. Stephens, Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles, Biochem. J. 258 (1989) 683-687.
-
[22]
[14] M. Ahmad, T.A. King, B.H. Cha, J. Lee, Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases, J. Phys. D: Appl. Phys. 35 (2002) 1473-1476.
-
[23]
[15] (a) B. Das, K. Laxminarayana, M. Krishnaiah, Y. Srinivas, An efficient and convenient protocol for the synthesis of novel 12-aryl-or 12-alkyl-8,9,10,12-tetrahy-drobenzo[a]xanthen-11-one derivatives, Synlett (2007) 3107-3112;
-
[24]
(b) J.M. Khurana, D. Magoo, pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions, Tetrahedron Lett. 50 (2009) 4777-4780;
-
[25]
(c) L. Wu, Y. Wu, F. Yan, L. Fang, HClO4-SiO2-catalyzed synthesis of 12-aryl-12Hbenzo[i][1,3]dioxolo[4,5-b]xanthene-6,11-diones and 10-aryl-6,7,8,10-tetrahy-dro-7,7-dimethyl-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones, Monatsh Chem. 141 (2010) 871-875;
-
[26]
(d) J.J. Li, W.Y. Tang, L.M. Lu, W.K. Su, Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds, Tetrahedron Lett. 49 (2008) 7117-7120;
-
[27]
(e) R.Z. Wang, L.F. Zhang, Z.S. Cui, Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one derivatives via multicomponent reaction, Synth. Commun. 39 (2009) 2101-2107;
-
[28]
(f) S. Gao, C.H. Tsai, C.F. Yao, a simple and green approach for the synthesis of tetrahydrobenzo[a]-xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water, Synlett (2009) 949-954;
-
[29]
(g) J. Li, L. Lu, W. Su, A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water, Tetrahedron Lett. 51 (2010) 2434-2437;
-
[30]
(h) G.C. Nandi, S. Samai, R. Kumar, M.S. Singh, An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition, Tetrahedron 65 (2009) 7129-7134;
-
[31]
(e) S. Yadav, B. Nand, J.M. Khurana, An efficient synthesis of novel 3-hydroxy-12-arylbenzo[a]xanthen-11-ones and 5,12-diarylxantheno[2,1-a]xanthene-4,12-diones using pTSA in [bmim]BF4, Can. J. Chem. 91 (2013) 698-703.
-
[32]
[16] (a) H. Singh, J. Sindhu, J.M. Khurana, Efficient, green and regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazoles in ionic liquid [bmim]BF4 and in taskspecific basic ionic liquid [bmim]OH, J. Iran Chem. Soc. 10 (2013) 883-888;
-
[33]
(b) H. Singh, J. Sindhu, J.M. Khurana, Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU-H2O catalytic system, RSC Adv. 3 (2013) 22360-22366;
-
[34]
(c) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies, Aust. J. Chem. 66 (2013) 1088-1096;
-
[35]
(d) J. Sindhu, H. Singh, J.M. Khurana, C. Sharma, K.R. Aneja, Multicomponent synthesis of novel 2-aryl-5-((1-aryl-1H-1,2,3-triazol-4-yl)methylthio)-1,3,4-oxa-diazoles using CuI as catalyst and their antimicrobial evaluation, Aust. J. Chem. 66 (2013) 710-717;
-
[36]
(e) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity, Eur. J. Med. Chem. 77 (2014) 145-154;
-
[37]
(f) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, Syntheses, biological evaluation and photophysical studies of novel 1,2,3-triazole linked azo dyes, RSC Adv. 4 (2014) 5915-5926.
-
[1]
-
-
-
[1]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[2]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[3]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[4]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[5]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[6]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[7]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[8]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[9]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[10]
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
-
[11]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[12]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[13]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[14]
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
-
[15]
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
-
[16]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[17]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[18]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[19]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[20]
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(695)
- HTML views(7)