Citation: Yang-Yang Huang, Meng-Jia Wang, Zheng Yang, Meng-Yao She, Shu Wang, Ping Liu, Jian-Li Li, Zhen Shi. High effi cient probes with Schiff base functional receptors for hypochlorite sensing under physiological conditions[J]. Chinese Chemical Letters, ;2014, 25(7): 1077-1081. doi: 10.1016/j.cclet.2014.05.011 shu

High effi cient probes with Schiff base functional receptors for hypochlorite sensing under physiological conditions

  • Corresponding author: Ping Liu,  Jian-Li Li, 
  • Received Date: 18 March 2014
    Available Online: 22 April 2014

    Fund Project: the Northwest University Science Foundation for Postgraduate Students (Nos. YZZ12030, YZZ13042) (No. 2012JQ2007) and the Chinese National Innovation Experiment Program for University Students (No. 201210697011). (Nos. YZZ12030, YZZ13042)

  • A series of novel and convenient fluorescent probes with Schiff base functionality were presented for direct detection of OCl- via the irreversible OCl--promoted oxidation and hydrolyzation reaction in formation of the ring-opened product, fluorescein. Prominent high sensitivity, selectivity and antiinterference OCl--induced fluorescence and color change over a wide range of tested metal ions performance were observed for each probe under physiological conditions, thus making the probes well suitable for sensing of OCl-in living cells.
  • 加载中
    1. [1]

      [1] (a) M. Vendrell, D.T. Zhai, J.C. Er, Y. Chang, Combinatorial strategies in fluorescent probe development, Chem. Rev. 112 (2012) 4391-4420; (b) Y.Y. Huang, M.J. Wang, M.Y. She, et al., Recent progress in the fluorescent probe based on spiro ring opening of xanthenes and related derivatives, Chin. J. Org. Chem. 34 (2014) 1-25; (c) L. Chen, Q. Zhao, X.Y. Zhang, G.H. Tao, Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine, Chin. Chem. Lett. 25 (2014) 261-264; (d) Q. Liu, L. Xue, D.J. Zhu, et al., Highly selective two-photon fluorescent probe for imaging of nitric oxide in living cells, Chin. Chem. Lett. 25 (2014) 19-23.

    2. [2]

      [2] (a) H. Woo, S. Cho, Y. Han, et al., Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors, J. Am. Chem. Soc. 135 (2013) 4771-4787; (b) X.Y. Qu, C.J. Li, H.C. Chen, A red fluorescent turn-on probe for hydrogen sulfide and its application in living cells, Chem. Commun. 49 (2013) 7510-7512; (c) M.Z. Tian, L.B. Liu, Y.J. Li, et al., An unusual OFF-ON fluorescence sensor for detecting mercury ions in aqueous media and living cells, Chem. Commun. 50 (2014) 2055-2057; (d) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and off-on fluorescent chemosensor for Fe3+, Sens. Actuators B: Chem. 157 (2011) 675-680; (e) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric "off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343; (f) Q. Liu, G.P. Li, D.J. Zhu, et al., Design of quinolone-based fluorescent probe for the ratiometric detection of cadmium in aqueous media, Chin. Chem. Lett. 24 (2013) 479-482.

    3. [3]

      [3] (a) Z.Q. Guo, S. Park, J. Yoon, I. Shin, Recent progress in the development of nearinfrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43 (2014) 16-29; (b) Z. Yang, L.K. Hao, B. Yin, et al., Six-membered spirocycle triggered probe for visualizing Hg2+ in living cells and bacteria-EPS-mineral aggregates, Org. Lett. 15 (2013) 4334-4337; (b) Z. Yang, L.K. Hao, B. Yin, et al., Six-membered spirocycle triggered probe for visualizing Hg2+ in living cells and bacteria-EPS-mineral aggregates, Org. Lett. 15 (2013) 4334-4337.

    4. [4]

      [4] V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386-7387.

    5. [5]

      [5] H.N. Kim, M.H. Lee, H.J. Kim, et al., A new trend in rhodamine based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472.

    6. [6]

      [6] X.Q. Chen, T. Pradhan, F. Wang, et al., Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.

    7. [7]

      [7] X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.

    8. [8]

      [8] (a) S. Kundu, P. Ghosh, S. Datta, et al., Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis, Free Radical Res. 46 (2012) 1482-1489; (b) D.M. Tabima, S. Frizzell, M.T. Gladwin, Reactive oxygen and nitrogen species in pulmonary hypertension, Free Radical Biol. Med. 2 (2012) 51970-51986.

    9. [9]

      [9] M.J. Gray, W.Y. Wholey, U. Jakob, Bacterial responses to reactive chlorine species, Annu. Rev. Microbiol. 67 (2013) 141-160.

    10. [10]

      [10] (a) M.R. Ramsey, N.E. Sharpless, ROS as a tumor suppressor? Nat. Cell Biol. 8 (2006) 1213-1215; (b) C. Nussbaum, A. Klinke, M. Adam, et al., Myeloperoxidase: a leukocytederived protagonist of inflammation and cardiovascular disease, Antioxid. Redox Sign. 18 (2013) 692-713.

    11. [11]

      [11] (a) Q.L. Xu, K. Lee, S. Lee, et al., A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production, J. Am. Chem. Soc. 135 (2013) 9944-9949; (b) X.J. Wu, Z. Li, L. Yang, et al., A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells, Chem. Sci. 4 (2013) 460-467; (c) M. Emrullahoğlu, M. Üçüncü, E. Karakus, A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid, Chem. Commun. 49 (2013) 7836-7838; (c) M. Emrullahoğlu, M. Ü çüncü, E. Karakus, A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid, Chem. Commun. 49 (2013) 7836-7838.

    12. [12]

      [12] L. Yuan, W.Y. Lin, Z.M. Cao, L.L. Long, J.Z. Song, Photocontrollable analyte-responsive fluorescent probes: a photocaged copper-responsive fluorescence turn-on probe, Chem. Eur. J. 17 (2011) 689-696.

    13. [13]

      [13] (a) Z. Yang, M.Y. She, J. Zhang, et al., Highly sensitive and selective rhodamine Schiff base "off-on" chemosensors for Cu2+ imaging in living cells, Sens. Actuators B: Chem. 176 (2013) 482-487; (b) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147.

    14. [14]

      [14] (a) X.Q. Chen, X.C. Wang, S.J. Wang, et al., A highly selective and sensitive fluorescence probe for the hypochlorite anion, Chem. Eur. J. 14 (2008) 4719-4724; (b) G.W. Chen, F.L. Song, J.Y. Wang, et al., FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite, Chem. Commun. 48 (2012) 2949-2951.

  • 加载中
    1. [1]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    2. [2]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    3. [3]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    4. [4]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    7. [7]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    8. [8]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    9. [9]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    10. [10]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    11. [11]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    12. [12]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    13. [13]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    14. [14]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    15. [15]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    16. [16]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    17. [17]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    18. [18]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    19. [19]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    20. [20]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

Metrics
  • PDF Downloads(0)
  • Abstract views(655)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return