Citation: Zhen Gu, Yi-Lun Ying, Bing-Yong Yan, Hui-Feng Wang, Pin-Gang He, Yi-Tao Long. Exponentially modifi ed Gaussian relevance to the distributions of translocation events in nanopore-based single molecule detection[J]. Chinese Chemical Letters, ;2014, 25(7): 1029-1032. doi: 10.1016/j.cclet.2014.05.009 shu

Exponentially modifi ed Gaussian relevance to the distributions of translocation events in nanopore-based single molecule detection

  • Corresponding author: Bing-Yong Yan,  Hui-Feng Wang,  Pin-Gang He, 
  • Received Date: 20 February 2014
    Available Online: 23 April 2014

    Fund Project: The authors acknowledge funding of the National Natural Science Foundation of China (No. 21327807). Y.-T. Long is grateful for funds from the National Science Fund for Distinguished Young Scholars of China (No. 21125522). Y.-L. Ying thanks the Sino-UK Higher Education Research Partnership for PhD Studies. (No. 21327807)

  • Nanopore technique plays an important role in single molecule detection, which illuminates the properties of an individual molecule by analyzing the blockage durations and currents. However, the traditional exponential function is lack of efficiency to describe the distributions of blockage durations in nanopore experiments. Herein, we introduced an exponentially modified Gaussian (EMG) function to fit the duration histograms of both simulated events and experimental events. In comparison with the traditional exponential function, our results demonstrated that the EMG provides a better fit while covers the entire range of the distributions. In particular, the fitted parameters of EMG could be directly used to discriminate the sequence length of the oligonucleotides at single molecule level.
  • 加载中
    1. [1]

      [1] J. Kasianowicz, E. Brandin, D. Branton, D. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 13770-13773.

    2. [2]

      [2] Y.L. Ying, J. Zhang, R. Gao, Y.T. Long, Nanopore-based sequencing and detection of nucleic acids, Angew. Chem. Int. Ed. 52 (2013) 13154-13161.

    3. [3]

      [3] M. Akeson, D. Branton, J.J. Kasianowicz, E. Brandin, D. Deamer, Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules, Biophys. J. 77 (1999) 3227-3233.

    4. [4]

      [4] N. An, A.M. Fleming, H.S. White, C.J. Burrows, Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 11504-11509.

    5. [5]

      [5] Y. Wang, D. Zheng, Q. Tan, M.X. Wang, L.Q. Gu, Nanopore-based detection of circulating microRNAs in lung cancer patients, Nat. Nanotechnol. 6 (2011) 668-674.

    6. [6]

      [6] S. Liu, B. Lu, Q. Zhao, et al., Boron nitride nanopores: highly sensitive DNA singlemolecule detectors, Adv. Mater. 25 (2013) 4549-4554.

    7. [7]

      [7] S. Wen, T. Zeng, L. Liu, et al., Highly sensitive and selective DNA-based detection of mercury(II) with alpha-hemolysin nanopore, J. Am. Chem. Soc. 133 (2011) 18312-18317.

    8. [8]

      [8] J. Sha, T. Hasan, S. Milana, et al., Nanotubes complexed with DNA and proteins for resistive-pulse sensing, ACS Nano 7 (2013) 8857-8869.

    9. [9]

      [9] J. Nivala, D.B. Marks, M. Akeson, Unfoldase-mediated protein translocation through an [alpha]-hemolysin nanopore, Nat. Biotechnol. 31 (2013) 247-250.

    10. [10]

      [10] D. Rotem, L. Jayasinghe, M. Salichou, H. Bayley, Protein detection by nanopores equipped with aptamers, J. Am. Chem. Soc. 134 (2012) 2781-2787.

    11. [11]

      [11] T.C. Sutherland, Y.T. Long, R.I. Stefureac, et al., Structure of peptides investigated by nanopore analysis, Nano Lett. 4 (2004) 1273-1277.

    12. [12]

      [12] L. Movileanu, J.P. Schmittschmitt, J. Martin Scholtz, H. Bayley, Interactions of peptides with a protein pore, Biophys. J. 89 (2005) 1030-1045.

    13. [13]

      [13] H.Y. Wang, Y.L. Ying, Y. Li, Y.T. Long, Peering into biological nanopore: a practical technology to single-molecule analysis, Chem. -Asian J. 5 (2010) 1952-1961.

    14. [14]

      [14] F. Olasagasti, K.R. Lieberman, S. Benner, et al., Replication of individual DNA molecules under electronic control using a protein nanopore, Nat. Nanotechnol. 5 (2010) 798-806.

    15. [15]

      [15] Y. Ying, X. Zhang, Y. Liu, et al., Single molecule study of the weak biological interactions between P53 and DNA, Acta Chim. Sin. 71 (2013) 44-50.

    16. [16]

      [16] Y.L. Ying, D.W. Li, Y. Li, J.S. Lee, Y.T. Long, Enhanced translocation of poly(dt) 45 through an α-hemolysin nanopore by binding with antibody, Chem. Commun. 47 (2011) 5690-5692.

    17. [17]

      [17] Y.L. Ying, H.Y. Wang, T.C. Sutherland, Y.T. Long, Monitoring of an ATP-binding aptamer and its conformational changes using an alpha-hemolysin nanopore, Small 7 (2011) 87-94.

    18. [18]

      [18] Y.L. Ying, D.W. Li, Y. Liu, et al., Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an α-hemolysin nanopore, Chem. Commun. 48 (2012) 8784-8786.

    19. [19]

      [19] H.Y. Wang, Z. Gu, C. Cao, J. Wang, Y.T. Long, Analysis of a single alpha-synuclein fibrillation by the interaction with a protein nanopore, Anal. Chem. 85 (2013) 8254-8261.

    20. [20]

      [20] Y.L. Ying, J. Zhang, F.N. Meng, et al., A stimuli-responsive nanopore based on a photoresponsive host-guest system, Sci. Rep. (2014), http://dx.doi.org/10.1038/ srep01662.

    21. [21]

      [21] D. Branton, D.W. Deamer, A. Marziali, et al., The potential and challenges of nanopore sequencing, Nat. Biotechnol. 26 (2008) 1146-1153.

    22. [22]

      [22] B. Gyarfas, F. Olasagasti, S. Benner, et al., Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5Åresolution, ACS Nano 3 (2009) 1457-1466.

    23. [23]

      [23] K.R. Lieberman, G.M. Cherf, M.J. Doody, et al., Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase, J. Am. Chem. Soc. 132 (2010) 17961-17972.

    24. [24]

      [24] A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton, Rapid nanopore discrimination between single polynucleotide molecules, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 1079-1084.

    25. [25]

      [25] D. Hanggi, P.W. Carr, Errors in exponentially modified Gaussian equations in the literature, Anal. Chem. 57 (1985) 2394-2395.

    26. [26]

      [26] X. Li, V.L. McGuffin, Theoretical evaluation of methods for extracting retention factors and kinetic rate constants in liquid chromatography, J. Chromatogr. A 1203 (2008) 67-80.

    27. [27]

      [27] A. Golubev, Exponentially modified Gaussian (EMG) relevance to distributions related to cell proliferation and differentiation, J. Theor. Biol. 262 (2010) 257-266.

    28. [28]

      [28] H.Y. Wang, Y.L. Ying, Y. Li, H.B. Kraatz, Y.T. Long, nanopore analysis of amyloid peptide aggregation transition induced by small molecules, Anal. Chem. 83 (2011) 1746-1752.

    29. [29]

      [29] Y. Liu, Y.L. Ying, H.Y. Wang, et al., Real-time monitoring of the oxidative response of a membrane-channel biomimetic system to free radicals, Chem. Commun. 49 (2013) 6584-6586.

    30. [30]

      [30] M.G. Gauthier, G.W. Slater, A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach, J. Phys.Chem. 128 (2008) 065103.

    31. [31]

      [31] A. Meller, D. Branton, Single molecule measurements of DNA transport through a nanopore, Electrophoresis 23 (2002) 2583-2591.

    32. [32]

      [32] J. Li, M. Gershow, D. Stein, E. Brandin, J. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater. 2 (2003) 611-615.

  • 加载中
    1. [1]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    2. [2]

      Chenghe Yang Yi Lü Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, 2025, 40(4): 340-345. doi: 10.12461/PKU.DXHX202406111

    3. [3]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    4. [4]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    5. [5]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    10. [10]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    14. [14]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    15. [15]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    16. [16]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    17. [17]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    18. [18]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    19. [19]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    20. [20]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

Metrics
  • PDF Downloads(0)
  • Abstract views(592)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return