Citation:
Hai-Feng Gan, Wei-Wei Cao, Zheng Fang, Xin Li, Shi-Gui Tang, Kai Guo. Efficient synthesis of chromenopyridine and chromene via MCRs[J]. Chinese Chemical Letters,
;2014, 25(10): 1357-1362.
doi:
10.1016/j.cclet.2014.05.008
-
MCRs for preparation of chromenopyridines under reflux conditions and chromenes at room temperature conditions from different salicylaldehydes, malononitrile and different thiols (mol ratio = 1:2:1) were established. Mechanistic investigation suggests that the MCRs undergo different pathways at different temperatures and catalyzed by different organic bases. The structure of chromenopyridine and chromene are confirmed by crystal X-ray crystallography.
-
-
-
[1]
[1] (a) R.V.B. Orrum, M. Greep, Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds, Synthesis (2003) 1471-1499;
-
[2]
(b) A. Döling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.
-
[3]
[2] (a) V. Nair, A.U. Vinod, C. Rajesh, A novel synthesis of 2-aminopyrroles using a three-component reaction, J. Org. Chem. 66 (2001) 4427-4429;
-
[4]
(b) B. List, C. Castello, A novel proline-catalyzed three-component reaction of ketones, aldehydes, and Meldrum's acid, Synlett (2001) 1687-1689.
-
[5]
[3] (a) K. Guo, M.J. Thompson, T.R.K. Reddy, R. Mutter, B. Chen, Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries, Tetrahedron 63 (2007) 5300-5311;
-
[6]
(b) K. Guo, M.J. Thompson, B. Chen, Exploring catalyst and solvent effects in the multicomponent synthesis of pyridine-3,5-dicarbonitriles, J. Org. Chem. 74 (2009) 6999-7006;
-
[7]
(c) M.J. Thompson, B. Chen, Ugi reactions with ammonia offer rapid access to a wide range of 5-aminothiazole and oxazole derivatives, J. Org. Chem. 74 (2009) 7084-7093;
-
[8]
(d) M.J. Thompson, J.M. Hurst, B. Chen, Regioselective, solvent-free synthesis of 3-aminoimidazo[1,2-a]pyrimidines under microwave irradiation promoted by zeolite HY, Synlett (2008) 3183-3187.
-
[9]
[4] (a) N.M. Evdokimov, A.S. Kireev, A.A. Yakovenko, et al., One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols, J. Org. Chem. 72 (2007) 3443-3453;
-
[10]
(b) M. Costa, F. Areias, L. Abrunhosa, A. Venãncio, F. Proencüa, The condensation of salicylaldehydes and malononitrile revisited: synthesis of new dimeric chromene derivatives, J. Org. Chem. 73 (2008) 1954-1962;
-
[11]
(c) S. Mishra, R. Ghosh, K2CO3-mediated, one-pot, multicomponent synthesis of medicinally potent pyridine and chromeno[2,3-b]pyridine scaffolds, Synth. Commun. 42 (2012) 2229-2244.
-
[12]
[5] (a) D.S. Weinstein, H. Gong, A.M. Doweyko, et al., Azaxanthene based selective glucocorticoid receptor modulators: design, synthesis, and pharmacological evalu-ation of (S)-4-(5-(1-((1,3,4-thiadiazol-2-yl)amino)-2-methyl-1-oxopropan-2-yl)-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoro-N,N-dimethylbenzamide (BMS-776532) and its methylene homologue (BMS-791826), J. Med. Chem. 54 (2011) 7318-7333;
-
[13]
(b) G. Kolokythas, N. Pouli, P. Marakos, H. Pratsinis, D. Kletsas, Design, synthesis and antiproliferative activity of some new azapyranoxanthenone aminoderivatives, Eur. J. Med. Chem. 41 (2006) 71-79;
-
[14]
(c) M.A. Azuine, H. Tokuda, J. Takayasu, et al., Cancer chemopreventive effect of phenothiazines and related tri-heterocyclic analogues in the 12-O-tetradeca-noylphorbol-13-acetate promoted Epstein-Barr virus early antigen activation and the mouse skin two-stage carcinogenesis models, J. Pharmacol. Res. 49 (2004) 161-169;
-
[15]
(d) S.K. Srivastava, R.P. Tripathi, R. Ramachandran, NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: crystal structure of the adenylation domain and identification of novel inhibitors, J. Biol. Chem. 280 (2005) 30273-30281;
-
[16]
(e) H. Brötz-Oesterhelt, I. Knezevic, S. Bartel, et al., Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones, J. Biol. Chem. 278 (2003) 39435-39442;
-
[17]
(f) D.R. Anderson, S. Hegde, E. Reinhard, et al., Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2), Bioorg. Med. Chem. Lett. 15 (2005) 1587-1590;
-
[18]
(g) J.A. Bristol, E.H. Gold, I. Gross, R.G. Lovey, J. Long, Gastric antisecretory agents. 2. Antisecretory activity of 9-[(aminoalkyl)thio]-9H-xanthenes and 5-[(aminoalkyl)thio]-5H-[1]benzopyrano[2,3-b]pyridines, J. Med. Chem. 24 (1981) 1010-1013;
-
[19]
(h) M. Venkati, G.L.D. Krupadanam, A facile synthesis of ethyl-2-methyl-5-aryl-5H-chromeno[3,4-c]pyridine-1-carboxylates, Synth. Commun. 31 (2001) 2589-2598.
-
[20]
[6] M. Curini, G. Cravotto, F. Epifano, G. Giannone, Chemistry and biological activity of natural and synthetic prenyloxycoumarins, Curr. Med. Chem. 13 (2006) 199-222.
-
[21]
[7] (a) A.M. El-Agrody, M.H. El-Hakim, M.S. Abd El-Latif, et al., Synthesis of pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine derivatives with promising antibacterial activities, Acta Pharm. 50 (2000) 111-120;
-
[22]
(b) M.C. Yimdjo, A.G. Azebaze, A.E. Nkengfack, et al., Antimicrobial and cytotoxic agents from calophyllum inophyllum, Phytochemistry 65 (2004) 2789-2795;
-
[23]
(c) Z.Q. Xu, K. Pupek, W.J. Suling, L. Enache, M.T. Flavin, Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against Mycobacterium tuberculosis, Bioorg. Med. Chem 14 (2006) 4610-4626;
-
[24]
(d) V. Jeso, K.C. Nicolaou, Total synthesis of tovophyllin B, Tetrahedron Lett. 50 (2009) 1161-1163;
-
[25]
(e) L. Alvey, S. Prado, B. Saint-Joanis, et al., Diversity-oriented synthesis of furo[3,2-f]chromanes with antimycobacterial activity, Eur. J. Med. Chem. 44 (2009) 2497-2505.
-
[26]
[8] (a) L. Alvey, S. Prado, V. Huteau, et al., A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial, Bioorg. Med. Chem. 16 (2008) 8264-8272;
-
[27]
(b) T. Symeonidis, M. Chamilos, D.J. Hadjipavlou-Litina, M. Kallitsakis, K.E. Litinas, Synthesis of hydroxycoumarins and hydroxybenzo[f]-or [h]coumarins as lipid peroxidation inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 1139-1142.
-
[28]
[9] T. Narender, S. Gupta, A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity, Bioorg. Med. Chem. Lett. 14 (2004) 3913-3916.
-
[29]
[10] (a) S.J. Mohr, M.A. Chirigos, F.S. Fuhrman, J.W. Pryor, Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor, Cancer Res. 35 (1975) 3750-3754;
-
[30]
(b) A. Rampa, A. Bisi, F. Belluti, et al., Homopterocarpanes as bridged triarylethylene analogues: synthesis and antagonistic effects in human MCF-7 breast cancer cells, Farmaco 60 (2005) 135-147;(c) Q.B. Han, N.Y. Yang, H.L. Tian, et al., Xanthones with growth inhibition against HeLa cells from Garcinia xipshuanbannaensis, Phytochemistry 69 (2008) 2187-2192;
-
[31]
(d) J.L. Wang, D.X. Liu, Z.J. Zhang, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7124-7129.
-
[32]
[11] V.K. Tandon, M. Vaish, S. Jain, D.S. Bhakuni, R.C. Srimal, Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-4-one, Indian J. Pharm. Sci. 53 (1991) 22-23.
-
[33]
[12] M. Brunavs, C. P. Dell, P. T.Gallagher, W. M. Owton, C. W. Smith. 4H-naphtho[1,2-b]pyran derivatives as antiproliferative agents. Eur. Pat. Appl. EP 557075 A1 19930825, (1993).
-
[34]
[13] M. Longobardi, A. Bargagna, E. Mariani, et al., 2H-[1]benzothiepino[5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities, Farmaco 45 (1990) 399-404.
-
[35]
[14] (a) K. Gorlitzer, A. Dehre, E. Engler, 2-(1H-Tetrazol-5-yl)-4,5-dihydroindeno[1,2-b]pyran-4-one, Arch. Pharm. 316 (1983) 264-270;
-
[36]
(b) P. Coudert, J.M. Couquelet, J. Bastide, Y. Marion, J. Fialip, Synthesis and antiallergic properties of some N-arylnitrones having a furopyran structure, Ann. Pharm. Fr. 46 (1988) 91-96.
-
[37]
[15] F. Eiden, F. Denk, Synthesis and CNS-activity of pyran derivatives: 6,8-dioxabicyclo[3.2.1]octanes, Arch. Pharm. 324 (1991) 353-354.
-
[38]
[16] C. Bruhlmann, F. Ooms, P. Carrupt, et al., Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase, J. Med. Chem. 44 (2001) 3195-3198.
-
[39]
[17] S.R. Kesten, T.G. Heffner, S.J. Johnson, et al., Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists, J. Med. Chem. 42 (1999) 3718-3725.
-
[40]
[18] (a) M.A. Kulkarni, K.S. Pandit, U.V. Desai, U.P. Lad, P.P. Wadgaonkar, Diethylamine: a smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4H-chromenes at ambient temperature, C. R. Chimie 16 (2013) 689-695;
-
[41]
(b) A.K. Gupta, K. Kumari, N. Singh, D.S. Raghuvanshi, K.N. Singh, An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature, Tetrahedron Lett. 53 (2012) 650-653;
-
[42]
(c) J.M. Doshi, D. Tian, C. Xing, Structure activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer, J. Med. Chem. 49 (2006) 7731-7739;
-
[43]
(d) D. Greé, S. Vorin, V.L. Manthati, et al., The synthesis of new, selected analogues of the pro-apoptotic and anticancer molecule HA 14-1, Tetrahedron Lett. 49 (2008) 3276-3278;
-
[44]
(e) P. Jayashree, G. Shanthi, P.T. Perumal, Indium trichloride catalyzed one-pot synthesis of new (2-amino-3-cyano-4H-chromen-4-yl) phosphonic acid diethyl ester, Synlett (2009) 917-920.
-
[45]
[19] J. Volmajer, R. Toplak, I. Lebanb, A.M.L. Marechal, Synthesis of new iminocoumarins and their transformations into N-chloro and hydrazono compounds, Tetrahedron 61 (2005) 7012-7021.
-
[46]
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision C.02, Gaussian, Inc., Wallingford CT, Wallingford, 2009.
-
[47]
[21] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
-
[48]
[22] (a) R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods, XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650-654;
-
[49]
(b) A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18, J. Chem. Phys. 72 (1980) 5639-5648;
-
[50]
(c) T. Clark, J. Chandrasekhar, G.W. Spitznagel, P. von Raye Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, lithium to fluorine, J. Comp. Chem. 4 (1983) 294-301.
-
[51]
[23] (a) B. Menucci, J. Tomassi, Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries, J. Chem. Phys. 106 (1997) 5151-5158;
-
[52]
(b) M. Cossi, V. Barone, B. Menucci, J. Tomassi, Ab initio study of ionic solutions by a polarizable continuum dielectric model, Chem. Phys. Lett. 286 (1998) 253-260.
-
[1]
-
-
-
[1]
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
-
[2]
Chunmao Yuan , Yanrong Zeng , Lei Huang , Yu Mou , Jun Jin , Ping Yi , Yanmei Li , Xiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859
-
[3]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[4]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[5]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[6]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[7]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[8]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[9]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[10]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[11]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[12]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[13]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[14]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[15]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[16]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[17]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[18]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[19]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[20]
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(702)
- HTML views(25)