Citation: Hai-Feng Gan, Wei-Wei Cao, Zheng Fang, Xin Li, Shi-Gui Tang, Kai Guo. Efficient synthesis of chromenopyridine and chromene via MCRs[J]. Chinese Chemical Letters, ;2014, 25(10): 1357-1362. doi: 10.1016/j.cclet.2014.05.008 shu

Efficient synthesis of chromenopyridine and chromene via MCRs

  • Corresponding author: Kai Guo, 
  • Received Date: 21 February 2014
    Available Online: 24 April 2014

    Fund Project: the National High Technology Research and Development Program of China (863 Program, No. 2013AA031901) (863 Program, No. 2012AA02A701)

  • MCRs for preparation of chromenopyridines under reflux conditions and chromenes at room temperature conditions from different salicylaldehydes, malononitrile and different thiols (mol ratio = 1:2:1) were established. Mechanistic investigation suggests that the MCRs undergo different pathways at different temperatures and catalyzed by different organic bases. The structure of chromenopyridine and chromene are confirmed by crystal X-ray crystallography.
  • 加载中
    1. [1]

      [1] (a) R.V.B. Orrum, M. Greep, Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds, Synthesis (2003) 1471-1499;

    2. [2]

      (b) A. Döling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.

    3. [3]

      [2] (a) V. Nair, A.U. Vinod, C. Rajesh, A novel synthesis of 2-aminopyrroles using a three-component reaction, J. Org. Chem. 66 (2001) 4427-4429;

    4. [4]

      (b) B. List, C. Castello, A novel proline-catalyzed three-component reaction of ketones, aldehydes, and Meldrum's acid, Synlett (2001) 1687-1689.

    5. [5]

      [3] (a) K. Guo, M.J. Thompson, T.R.K. Reddy, R. Mutter, B. Chen, Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries, Tetrahedron 63 (2007) 5300-5311;

    6. [6]

      (b) K. Guo, M.J. Thompson, B. Chen, Exploring catalyst and solvent effects in the multicomponent synthesis of pyridine-3,5-dicarbonitriles, J. Org. Chem. 74 (2009) 6999-7006;

    7. [7]

      (c) M.J. Thompson, B. Chen, Ugi reactions with ammonia offer rapid access to a wide range of 5-aminothiazole and oxazole derivatives, J. Org. Chem. 74 (2009) 7084-7093;

    8. [8]

      (d) M.J. Thompson, J.M. Hurst, B. Chen, Regioselective, solvent-free synthesis of 3-aminoimidazo[1,2-a]pyrimidines under microwave irradiation promoted by zeolite HY, Synlett (2008) 3183-3187.

    9. [9]

      [4] (a) N.M. Evdokimov, A.S. Kireev, A.A. Yakovenko, et al., One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols, J. Org. Chem. 72 (2007) 3443-3453;

    10. [10]

      (b) M. Costa, F. Areias, L. Abrunhosa, A. Venãncio, F. Proencüa, The condensation of salicylaldehydes and malononitrile revisited: synthesis of new dimeric chromene derivatives, J. Org. Chem. 73 (2008) 1954-1962;

    11. [11]

      (c) S. Mishra, R. Ghosh, K2CO3-mediated, one-pot, multicomponent synthesis of medicinally potent pyridine and chromeno[2,3-b]pyridine scaffolds, Synth. Commun. 42 (2012) 2229-2244.

    12. [12]

      [5] (a) D.S. Weinstein, H. Gong, A.M. Doweyko, et al., Azaxanthene based selective glucocorticoid receptor modulators: design, synthesis, and pharmacological evalu-ation of (S)-4-(5-(1-((1,3,4-thiadiazol-2-yl)amino)-2-methyl-1-oxopropan-2-yl)-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoro-N,N-dimethylbenzamide (BMS-776532) and its methylene homologue (BMS-791826), J. Med. Chem. 54 (2011) 7318-7333;

    13. [13]

      (b) G. Kolokythas, N. Pouli, P. Marakos, H. Pratsinis, D. Kletsas, Design, synthesis and antiproliferative activity of some new azapyranoxanthenone aminoderivatives, Eur. J. Med. Chem. 41 (2006) 71-79;

    14. [14]

      (c) M.A. Azuine, H. Tokuda, J. Takayasu, et al., Cancer chemopreventive effect of phenothiazines and related tri-heterocyclic analogues in the 12-O-tetradeca-noylphorbol-13-acetate promoted Epstein-Barr virus early antigen activation and the mouse skin two-stage carcinogenesis models, J. Pharmacol. Res. 49 (2004) 161-169;

    15. [15]

      (d) S.K. Srivastava, R.P. Tripathi, R. Ramachandran, NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: crystal structure of the adenylation domain and identification of novel inhibitors, J. Biol. Chem. 280 (2005) 30273-30281;

    16. [16]

      (e) H. Brötz-Oesterhelt, I. Knezevic, S. Bartel, et al., Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones, J. Biol. Chem. 278 (2003) 39435-39442;

    17. [17]

      (f) D.R. Anderson, S. Hegde, E. Reinhard, et al., Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2), Bioorg. Med. Chem. Lett. 15 (2005) 1587-1590;

    18. [18]

      (g) J.A. Bristol, E.H. Gold, I. Gross, R.G. Lovey, J. Long, Gastric antisecretory agents. 2. Antisecretory activity of 9-[(aminoalkyl)thio]-9H-xanthenes and 5-[(aminoalkyl)thio]-5H-[1]benzopyrano[2,3-b]pyridines, J. Med. Chem. 24 (1981) 1010-1013;

    19. [19]

      (h) M. Venkati, G.L.D. Krupadanam, A facile synthesis of ethyl-2-methyl-5-aryl-5H-chromeno[3,4-c]pyridine-1-carboxylates, Synth. Commun. 31 (2001) 2589-2598.

    20. [20]

      [6] M. Curini, G. Cravotto, F. Epifano, G. Giannone, Chemistry and biological activity of natural and synthetic prenyloxycoumarins, Curr. Med. Chem. 13 (2006) 199-222.

    21. [21]

      [7] (a) A.M. El-Agrody, M.H. El-Hakim, M.S. Abd El-Latif, et al., Synthesis of pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine derivatives with promising antibacterial activities, Acta Pharm. 50 (2000) 111-120;

    22. [22]

      (b) M.C. Yimdjo, A.G. Azebaze, A.E. Nkengfack, et al., Antimicrobial and cytotoxic agents from calophyllum inophyllum, Phytochemistry 65 (2004) 2789-2795;

    23. [23]

      (c) Z.Q. Xu, K. Pupek, W.J. Suling, L. Enache, M.T. Flavin, Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against Mycobacterium tuberculosis, Bioorg. Med. Chem 14 (2006) 4610-4626;

    24. [24]

      (d) V. Jeso, K.C. Nicolaou, Total synthesis of tovophyllin B, Tetrahedron Lett. 50 (2009) 1161-1163;

    25. [25]

      (e) L. Alvey, S. Prado, B. Saint-Joanis, et al., Diversity-oriented synthesis of furo[3,2-f]chromanes with antimycobacterial activity, Eur. J. Med. Chem. 44 (2009) 2497-2505.

    26. [26]

      [8] (a) L. Alvey, S. Prado, V. Huteau, et al., A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial, Bioorg. Med. Chem. 16 (2008) 8264-8272;

    27. [27]

      (b) T. Symeonidis, M. Chamilos, D.J. Hadjipavlou-Litina, M. Kallitsakis, K.E. Litinas, Synthesis of hydroxycoumarins and hydroxybenzo[f]-or [h]coumarins as lipid peroxidation inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 1139-1142.

    28. [28]

      [9] T. Narender, S. Gupta, A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity, Bioorg. Med. Chem. Lett. 14 (2004) 3913-3916.

    29. [29]

      [10] (a) S.J. Mohr, M.A. Chirigos, F.S. Fuhrman, J.W. Pryor, Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor, Cancer Res. 35 (1975) 3750-3754;

    30. [30]

      (b) A. Rampa, A. Bisi, F. Belluti, et al., Homopterocarpanes as bridged triarylethylene analogues: synthesis and antagonistic effects in human MCF-7 breast cancer cells, Farmaco 60 (2005) 135-147;(c) Q.B. Han, N.Y. Yang, H.L. Tian, et al., Xanthones with growth inhibition against HeLa cells from Garcinia xipshuanbannaensis, Phytochemistry 69 (2008) 2187-2192;

    31. [31]

      (d) J.L. Wang, D.X. Liu, Z.J. Zhang, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7124-7129.

    32. [32]

      [11] V.K. Tandon, M. Vaish, S. Jain, D.S. Bhakuni, R.C. Srimal, Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-4-one, Indian J. Pharm. Sci. 53 (1991) 22-23.

    33. [33]

      [12] M. Brunavs, C. P. Dell, P. T.Gallagher, W. M. Owton, C. W. Smith. 4H-naphtho[1,2-b]pyran derivatives as antiproliferative agents. Eur. Pat. Appl. EP 557075 A1 19930825, (1993).

    34. [34]

      [13] M. Longobardi, A. Bargagna, E. Mariani, et al., 2H-[1]benzothiepino[5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities, Farmaco 45 (1990) 399-404.

    35. [35]

      [14] (a) K. Gorlitzer, A. Dehre, E. Engler, 2-(1H-Tetrazol-5-yl)-4,5-dihydroindeno[1,2-b]pyran-4-one, Arch. Pharm. 316 (1983) 264-270;

    36. [36]

      (b) P. Coudert, J.M. Couquelet, J. Bastide, Y. Marion, J. Fialip, Synthesis and antiallergic properties of some N-arylnitrones having a furopyran structure, Ann. Pharm. Fr. 46 (1988) 91-96.

    37. [37]

      [15] F. Eiden, F. Denk, Synthesis and CNS-activity of pyran derivatives: 6,8-dioxabicyclo[3.2.1]octanes, Arch. Pharm. 324 (1991) 353-354.

    38. [38]

      [16] C. Bruhlmann, F. Ooms, P. Carrupt, et al., Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase, J. Med. Chem. 44 (2001) 3195-3198.

    39. [39]

      [17] S.R. Kesten, T.G. Heffner, S.J. Johnson, et al., Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists, J. Med. Chem. 42 (1999) 3718-3725.

    40. [40]

      [18] (a) M.A. Kulkarni, K.S. Pandit, U.V. Desai, U.P. Lad, P.P. Wadgaonkar, Diethylamine: a smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4H-chromenes at ambient temperature, C. R. Chimie 16 (2013) 689-695;

    41. [41]

      (b) A.K. Gupta, K. Kumari, N. Singh, D.S. Raghuvanshi, K.N. Singh, An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature, Tetrahedron Lett. 53 (2012) 650-653;

    42. [42]

      (c) J.M. Doshi, D. Tian, C. Xing, Structure activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer, J. Med. Chem. 49 (2006) 7731-7739;

    43. [43]

      (d) D. Greé, S. Vorin, V.L. Manthati, et al., The synthesis of new, selected analogues of the pro-apoptotic and anticancer molecule HA 14-1, Tetrahedron Lett. 49 (2008) 3276-3278;

    44. [44]

      (e) P. Jayashree, G. Shanthi, P.T. Perumal, Indium trichloride catalyzed one-pot synthesis of new (2-amino-3-cyano-4H-chromen-4-yl) phosphonic acid diethyl ester, Synlett (2009) 917-920.

    45. [45]

      [19] J. Volmajer, R. Toplak, I. Lebanb, A.M.L. Marechal, Synthesis of new iminocoumarins and their transformations into N-chloro and hydrazono compounds, Tetrahedron 61 (2005) 7012-7021.

    46. [46]

      [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision C.02, Gaussian, Inc., Wallingford CT, Wallingford, 2009.

    47. [47]

      [21] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.

    48. [48]

      [22] (a) R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods, XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980) 650-654;

    49. [49]

      (b) A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18, J. Chem. Phys. 72 (1980) 5639-5648;

    50. [50]

      (c) T. Clark, J. Chandrasekhar, G.W. Spitznagel, P. von Raye Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, lithium to fluorine, J. Comp. Chem. 4 (1983) 294-301.

    51. [51]

      [23] (a) B. Menucci, J. Tomassi, Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries, J. Chem. Phys. 106 (1997) 5151-5158;

    52. [52]

      (b) M. Cossi, V. Barone, B. Menucci, J. Tomassi, Ab initio study of ionic solutions by a polarizable continuum dielectric model, Chem. Phys. Lett. 286 (1998) 253-260.

  • 加载中
    1. [1]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    2. [2]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    3. [3]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    6. [6]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    7. [7]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    8. [8]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    9. [9]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    10. [10]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    11. [11]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    14. [14]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    15. [15]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    16. [16]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    17. [17]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    20. [20]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

Metrics
  • PDF Downloads(0)
  • Abstract views(703)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return