Citation: Tao Zheng, Min Ren, Song-Song Bao, Li-Min Zheng. M2(pbtcH)(phen)2(H2O)2 [M(II)=Co, Ni]:Mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures[J]. Chinese Chemical Letters, ;2014, 25(6): 835-838. doi: 10.1016/j.cclet.2014.05.005 shu

M2(pbtcH)(phen)2(H2O)2 [M(II)=Co, Ni]:Mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures

  • Corresponding author: Li-Min Zheng, 
  • Received Date: 17 March 2014
    Available Online: 28 April 2014

    Fund Project: Financial supports by the National Basic Research Program of China (No. 2013CB922102) (No. 2013CB922102)the NSF of Jiangsu Province of China (No. BK2009009) are acknowledged. (No. BK2009009)

  • Two new mixed-ligated metal phosphonates, M2(pbtcH)(phen)2(H2O)2 [M(II)=Co (1), Ni (2)] (pbtcH5=5-phosphonatophenyl-1,2,4-tricarboxylic acid, phen=1,1'-phenanthroline), have been synthesized and characterized. Both show one-dimensional double chain structures, where the M(phen)(H2O) moieties are chelated and bridged by pbtcH4- through the carboxylate and phosphonate oxygen atoms. The chains are connected by hydrogen bonding interactions and π-π stacking, forming a three-dimensional supramolecular structure. The IR and magnetic properties of the two compounds are also investigated.
  • 加载中
    1. [1]

      [1] L. Ma, C. Abney, W. Lin, Enantioselective catalysis with homochiral metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1248-1256.

    2. [2]

      [2] P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911.

    3. [3]

      [3] M. Plabst, L.B. McCusker, T. Bein, Exceptional ion-exchange selectivity in a flexible open framework lanthanum(III) tetrakisphosphonate, J. Am. Chem. Soc. 131 (2009) 18112-18118.

    4. [4]

      [4] J.M. Taylor, R.K. Mah, I.L. Moudrakovski, et al., Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework, J. Am. Chem. Soc. 132 (2010) 14055-14057.

    5. [5]

      [5] X. Liang, F. Zhang, W. Feng, et al., From metal-organic framework (MOF) to MOFpolymer composite membrane: enhancement of low-humidity proton conductivity, Chem. Sci. 4 (2013) 983-992.

    6. [6]

      [6] Y.Z. Zheng, M. Evangelisti, F. Tuna, R.E.P. Winpenny, Co-Ln Mixed-metal phosphonate grids and cages as molecular magnetic refrigerants, J. Am. Chem. Soc. 134 (2011) 1057-1065.

    7. [7]

      [7] Y. Zhang, X.B. Han, Z.M. Zhang, et al., A {Ni7} cluster-containing sandwich-type phosphotungstate functionalized by organic bisphosphonate ligands and its two-dimensional supramolecular structure, Chin. Chem. Lett. 24 (2013) 581-584.

    8. [8]

      [8] L.M. Zheng, Y. Duan, Structural and magnetic studies of cobalt phosphonates, in: A. Clearfield, K. Demadis (Eds.), Metal Phosphonate Chemistry: From Synthesis to Applications, the Royal Society of Chemistry (2012) 235-278.

    9. [9]

      [9] T.H. Yang, Y. Liao, L.M. Zheng, et al., Tuning the field-induced magnetic transition in a layered cobalt phosphonate by reversible dehydration-hydration process, Chem. Commun. (2009) 3023-3025.

    10. [10]

      [10] Z.S. Cai, S.S. Bao, L.M. Zheng, Layered cobalt phosphonate with metamagnetism, Acta Chim. Sinica 71 (2013) 555-559.

    11. [11]

      [11] B.P. Yang, A.V. Prosvirin, Y.Q. Guo, J.G. Mao, Co[HO2C(CH2)3NH(CH2PO3H)2]2: a new canted antiferromagnet, Inorg. Chem. 47 (2008) 1453-1459.

    12. [12]

      [12] J. Huang, S.S. Bao, L.S. Ling, et al., A racemic polar cobalt phosphonate with weak ferromagnetism, Chem. Eur. J. 18 (2012) 10839-10842.

    13. [13]

      [13] L.R. Guo, S.S. Bao, B. Liu, et al., Enhanced magnetic hardness in a nanoscale metalorganic hybrid ferrimagnet, Chem. Eur. J. 18 (2012) 9534-9542.

    14. [14]

      [14] S.S. Bao, Y. Liao, Y.H. Su, et al., Tuning the spin state of cobalt in a Co-La heterometallic complex through controllable coordination sphere of La, Angew. Chem. Int. Ed. 50 (2011) 5504-5508.

    15. [15]

      [15] P.F. Wang, D.K. Cao, S.S. Bao, et al., Co3(2-OOCC6H4PO3)2(H2O)3 H2O: a layered metal phosphonate showing reversible dehydration-rehydration behavior and ferrimagnetism, Dalton Trans. 40 (2011) 1307-1312.

    16. [16]

      [16] J.T. Li, T.D. Keene, D.K. Cao, S. Decurtins, L.M. Zheng, [M(OOCC6H4PO3H)(H2O)] (M(II)=Mn, Co, Ni): layered metal phosphonates showing variable magnetic behavior, CrystEngComm 11 (2009) 1255-1260.

    17. [17]

      [17] J.M. Rueff, V. Caignaert, S. Chausson, et al., meta-Phosphonobenzoic acid: a rigid heterobifunctional precursor for the design of hybrid materials, Eur. J. Inorg. Chem. (2008) 4117-4125.

    18. [18]

      [18] P.F. Wang, Y. Duan, T.W. Wang, Y.Z. Li, L.M. Zheng, Three-dimensional metal phosphonodicarboxylates with GIS-zeolite topology: syntheses, structures and magnetic studies, Dalton Trans. 39 (2010) 10631-10636.

    19. [19]

      [19] H.J. Jin, P.F. Wang, S.S. Bao, L.M. Zheng, C. Yao, Layered manganese 4-phosphonoisophthalates (4-piH4) embeding Mn-O chains with metamagnetism in Mn3(4-piH)2(H2O)3•H2O, Sci. China Chem. 55 (2012) 1047-1054.

    20. [20]

      [20] P.F. Wang, Y. Duan, J.M. Clemente-Juan, et al., Magnetization relaxation in a threedimensional ligated cobalt phosphonate containing ferrimagnetic chains, Chem. Eur. J. 17 (2011) 3579-3583.

    21. [21]

      [21] P.F. Wang, Y. Duan, L.M. Zheng, One-dimensional metal phosphonates based on 6-phosphononicotinic acid: a structural and magnetic study, Sci. China Chem. 53 (2010) 2112-2117.

    22. [22]

      [22] T. Zheng, J.M. Clemente-Juan, J. Ma, et al., Breathing effect in a cobalt phosphonate upon dehydration/rehydration: a single-crystal-to-single-crystal study, Chem. Eur. J. 19 (2013) 16394-16402.

    23. [23]

      [23] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100.

    24. [24]

      [24] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 37 (1988) 785-789.

    25. [25]

      [25] SHELXTL (version 5.0), Reference Manual, Siemens Industrial Automation, Analytical Instruments, Madison, WI, 1995.

    26. [26]

      [26] C. Janiak, A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands, J. Chem. Soc. Dalton Trans. (2000) 3885-3896.

    27. [27]

      [27] F.E. Mabbs, D.J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973, p. 99.

    28. [28]

      [28] O. Kahn, Molecular Magnetism, VCH Publishers, Weinheim, 1993.

  • 加载中
    1. [1]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    2. [2]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    3. [3]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    4. [4]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    5. [5]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    6. [6]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    10. [10]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    11. [11]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    16. [16]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    19. [19]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    20. [20]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(0)
  • Abstract views(678)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return