Citation: Guang-Yue Hou, Lu Wang, Shu Liu, Feng-Rui Song, Zhi-Qiang Liu. Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity[J]. Chinese Chemical Letters, ;2014, 25(7): 1039-1043. doi: 10.1016/j.cclet.2014.04.029 shu

Inhibitory effect of eleven herbal extracts on advanced glycation end-products formation and aldose reductase activity

  • Corresponding author: Feng-Rui Song, 
  • Received Date: 26 February 2014
    Available Online: 14 April 2014

    Fund Project: This research was financially supported by the National Natural Science Foundation of China (No. 81373952) (No. 81373952)the Innovation Method Fund of China (No. 2012IM030600). (No. 2012IM030600)

  • The formation of advanced glycation end-products (AGEs) and aldose reductase (AR) activity have been implicated in the development of diabetic complications. Our study sought to characterize the capacities of eleven herbal extracts against the formation of AGEs and the AR activity. An ultrahigh performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) method was used for the detection of AR activity and the screening of AR inhibitors in this research. The amount of sorbitol from each analyte was directly detected using the multiple reaction monitoring mode and the sorbitol level could be reduced via the addition of an inhibitor. Moreover, the BSA/glucose (fructose) system was applied to investigate their inhibitory activities of AGEs formation in glycation model reactions. Compared with other screened herbs used in our study, Flos Sophorae Immaturus and Radix Scutellariae seemed to bemore effective on inhibiting the formation of AGEs and AR activity. The inhibiting capacities of herbal extracts against AR activity and AGEs formation may be correlated with the bioactive components of the herbal extracts. The differences were correlated with the amount of polyphenol and flavonoid components. In the study, we have investigated the potential anti-hyperglycemic bioactivity of eleven herbal extracts in vivo, which could provide a reference for further in vivo research in the prevention and treatment of diabetic complications.
  • 加载中
    1. [1]

      [1] D.J. Porte, M.W. Schwartz, Diabetes complications: why is glucose potentially toxic? Science 272 (1996) 699-700.

    2. [2]

      [2] I.M. Stratton, A.I. Adler, H.A. Neil, et al., Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study, Br. Med. J. 321 (2000) 405-412.

    3. [3]

      [3] R. Ramasamy, I.J. Goldberg, Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model, Circ. Res. 106 (2010) 1449-1458.

    4. [4]

      [4] M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414 (2001) 813-820.

    5. [5]

      [5] J.T. Xie, A. Wang, S. Mehendale, et al., Anti-diabetic effects of Gymnema yunnanense extract, Pharmacol. Res. 47 (2003) 323-329.

    6. [6]

      [6] R.A. DeFronzo, Pharmacologic therapy for type 2 diabetes mellitus, Ann. Intern. Med. 131 (1999) 281-303.

    7. [7]

      [7] K. Tsuji-Naito, H. Saeki, M. Hamano, Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products, Food Chem. 116 (2009) 854-859.

    8. [8]

      [8] O. El-Kabbani, F. Ruiz, C. Darmanin, R.P. Chung, Aldose reductase structures: implications for mechanism and inhibition, Cell. Mol. Life Sci. 61 (2004) 750-762.

    9. [9]

      [9] D.K. Wilson, K.M. Bohren, K.H. Gabbay, F.A. Quiocho, An unlikely sugar substrate site in the 1.65Åstructure of the human aldose reductase holoenzyme implicated in diabetic complications, Science 257 (1992) 81-84.

    10. [10]

      [10] H. Pareek, S. Sharma, B.S. Khajja, K. Jain, G.C. Jain, Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.), BMC Complem. Alter. Med. 9 (2009) 48-54.

    11. [11]

      [11] D. Normile, The new face of traditional Chinese medicine, Science 299 (2003) 188-190.

    12. [12]

      [12] J. Yin, H. Zhang, J. Ye, Traditional Chinese medicine in treatment of metabolic syndrome, Endocr. Metab. Immune. Disord. Drug Targets. 8 (2008) 99-111.

    13. [13]

      [13] L. Liu, J.A. Duan, Y. Tang, et al., Taoren-Honghua herb pair and its main components promoting blood circulation through influencing on hemorheology, plasma coagulation and platelet aggregation, J. Ethnopharmacol. 139 (2012) 381-387.

    14. [14]

      [14] S. Hayman, J.H. Kinoshita, Isolation and properties of lens aldose reductase, J. Biol. Chem. 240 (1965) 877-882.

    15. [15]

      [15] C. Nishimura, T. Yamaoka, M. Mizutani, et al., Purification and characterization of the recombinant human aldose reductase expressed in baculovirus system, Biochim. Biophys. Acta 1078 (1991) 171-178.

    16. [16]

      [16] J.A. Vinson, T.B. Howard III, Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients, J. Nutr. Biochem. 7 (1996) 659-663.

    17. [17]

      [17] J.Y. Wang, S.G. Zhu, C.F. Xu, Biochemistry, 3rd ed., Higher Education Press, Beijing, 2007.

    18. [18]

      [18] Y. Kawanishi, S. Noparatanawong, S. Kamohara, M. Nakano, Antioxidants supplementation prevents exercise induced oxidative damage in healthy subjects, J. Am. Diet. Assoc. 103 (2003) 36.

    19. [19]

      [19] C.S. Wu, Y. Jin, J.L. Zhang, Y. Ren, Z.X. Jia, Simultaneous determination of seven prohibited substances in cosmetic products by liquid chromatography-tandem mass spectrometry, Chin. Chem. Lett. 24 (2013) 509-511.

    20. [20]

      [20] S. Liu, J.P. Xing, Z. Zheng, et al., Ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry inhibitors fishing assay: a novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis, Anal. Chim. Acta 715 (2012) 64-70.

    21. [21]

      [21] N. Hotta, Y. Akanuma, R. Kawamori, et al., Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial, Diabetes Care 29 (2006) 1538-1544.

    22. [22]

      [22] H.A. Jung, M.D. Islam, Y.S. Kwon, et al., Extraction and identification of three major aldose reductase inhibitors from Artemisia montana, Food Chem. Toxicol. 49 (2011) 376-384.

    23. [23]

      [23] K. Kawanishi, H. Ueda, M. Moriyasu, Aldose reductase inhibitors from the nature, Curr. Med. Chem. 10 (2003) 1353-1374.

    24. [24]

      [24] J.Á. de la Fuente, S. Manzanaro, Aldose reductase inhibitors from natural sources, Nat. Prod. Rep. 20 (2003) 243-251.

    25. [25]

      [25] S. Katayama, Y. Haga, H. Saeki, Loss of filament-forming ability of myosin by nonenzymatic glycosylation and its molecular mechanism, FEBS Lett. 575 (2004) 9-13.

    26. [26]

      [26] T. Manaharan, L.L. Teng, D. Appleton, et al., Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts, Food Chem. 129 (2011) 1355-1361.

    27. [27]

      [27] X. Wang, L.S. Zhang, L.L. Dong, Inhibitory effect of polysaccharides from pumpkin on advanced glycation end-products formation and aldose reductase activity, Food Chem. 130 (2012) 821-825.

    28. [28]

      [28] J.X. Yang, J. Guo, J.F. Yuan, In vitro antioxidant properties of rutin, LWT -Food Sci. Technol. 41 (2008) 1060-1066.

    29. [29]

      [29] Z.H. Gao, H.B. Xu, X.J. Chen, H. Chen, Antioxidant status and mineral contents in tissues of rutin and baicalin fed rats, Life Sci. 73 (2003) 1599-1607.

    30. [30]

      [30] H.J. Heo, D.O. Kim, S.J. Choi, D.H. Shin, C.Y. Lee, Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity, J. Agric. Food Chem. 52 (2004) 4128-4132.

    31. [31]

      [31] S.C. Ho, S.P. Wu, S.M. Lin, Y.L. Tang, Comparison of anti-glycation capacities of several herbal infusions with that of green tea, Food Chem. 122 (2010) 768-774.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    3. [3]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    4. [4]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    5. [5]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    6. [6]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    7. [7]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    8. [8]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    11. [11]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    12. [12]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    13. [13]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    14. [14]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    15. [15]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    16. [16]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    17. [17]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    18. [18]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    19. [19]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    20. [20]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

Metrics
  • PDF Downloads(0)
  • Abstract views(603)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return