Citation: Shuang-Yong Lin, Hui-Jun Zhu, Wen-Jian Xu, Gui-Mei Wang, Nan-Yan Fu. A squaraine based fl uorescent probe for mercury ion via coordination induced deaggregation signaling[J]. Chinese Chemical Letters, ;2014, 25(9): 1291-1295. doi: 10.1016/j.cclet.2014.04.027 shu

A squaraine based fl uorescent probe for mercury ion via coordination induced deaggregation signaling

  • Corresponding author: Nan-Yan Fu, 
  • Received Date: 3 January 2014
    Available Online: 9 April 2014

    Fund Project: This work was financially supported by the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (No. J1103303) (No. J1103303) the National Natural Science Foundation of China (No. 20702005) (No. 20702005) Funding (Type A) from Fujian Education Department, PR China (Nos. JA12038 and JA13043) (No. 2013Y0062)the Science and Technology Development Fund of Fuzhou University, China (No. 600902). (Type A)

  • Due to the high affinity between dithiocarbamate (DTC) and Hg2+, a fluorescent probe based on squaraine chromophore with DTC side arm for Hg2+ via coordination induced deaggregation signaling has been designed and synthesized. Squaraine has a high tendency to aggregate in aqueous solution, and such self-aggregation usually results in a dramatic absorption spectral broadening with fluorescence emission quenching. The combination of the DTC side arm of the probe with Hg2+ induces steric hindrance, leading to the deaggregation of the dye complex, companying with a fluorescence emission restoration. In EtOH-H2O (20:80, v/v) solution, this "turn on" fluorescent probe has high selectivity and sensitivity toward Hg2+ over other metal ions, and the limit of detection for Hg2+ was estimated as 2.19×10-8mol/L by 3σ/k.
  • 加载中
    1. [1]

      [1] L. Magos, T.W. Clarkson, Overview of the clinical toxicity of mercury, Ann. Clin. Biochem. 43 (2006) 257-268.

    2. [2]

      [2] F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Low dose mercury toxicity and human health, Environ. Toxicol. Pharmacol. 20 (2005) 351-360.

    3. [3]

      [3] A. Taylor, S. Branch, D. Halls, M. Patriarca, M. White, Atomic spectrometry update. Clinical and biological materials, food and beverages, J. Anal. At. Spectrom. 17 (2002) 414-455.

    4. [4]

      [4] D. Beauchemin, Inductively coupled plasma mass spectrometry, Anal. Chem. 80 (2008) 4455-4486.

    5. [5]

      [5] E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108 (2008) 3443-3480.

    6. [6]

      [6] P. Mahato, S. Saha, E. Suresh, et al., Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe, Inorg. Chem. 51 (2012) 1769-1777.

    7. [7]

      [7] X. Ma, J. Wang, Q. Shan, et al., A "turn-on" fluorescent Hg2+ chemosensor based on Ferrier carbocyclization, Org. Lett. 14 (2012) 820-823.

    8. [8]

      [8] Y.J. Gong, X.B. Zhang, C.C. Zhang, et al., Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications, Anal. Chem. 84 (2012) 10777-10784.

    9. [9]

      [9] X.M. Meng, M.Z. Zhu, Q.X. Guo, A novel highly selective fluorescent chemosensor for Hg(II) in fully aqueous media, Chin. Chem. Lett. 18 (2007) 1209-1212.

    10. [10]

      [10] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    11. [11]

      [11] L. Hu, Z.Q. Yan, H.Y. Xu, Advances in synthesis and application of near-infrared absorbing squaraine dyes, RSC Adv. 3 (2013) 7667-7676.

    12. [12]

      [12] C. Chen, R.Y. Wang, N.Y. Fu, Squaraine dyes for ion recognition, Prog. Chem. 23 (2011) 739-749.

    13. [13]

      [13] Z. Wang, R. Wang, N. Fu, Advances of squaraine dyes in organic solar cells, Chin. J. Org. Chem. 31 (2011) 415-425.

    14. [14]

      [14] Y.W. Huang, N.Y. Fu, Synthesis and properties of a novel squaraine dye modified by ferrocene, Chin. Chem. Lett. 22 (2011) 1301-1304.

    15. [15]

      [15] Q. Lin, Y. Huang, J. Fan, R. Wang, N. Fu, A squaraine and Hg2+-based colorimetric and "turn on" fluorescent probe for cysteine, Talanta 114 (2013) 66-72.

    16. [16]

      [16] J. Fan, C. Chen, Q. Lin, N. Fu, A fluorescent probe for the dual-channel detection of Hg2+/Ag+1 and its Hg2+-based complex for detection of mercapto biomolecules with a tunable measuring range, Sens. Actuators B: Chem. 173 (2012) 874-881.

    17. [17]

      [17] K.M. Shafeekh, M.K.A. Rahim, M.C. Basheer, C.H. Suresh, S. Das, Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes, Dyes Pigm. 96 (2013) 714-721.

    18. [18]

      [18] L. Hu, Y. Zhang, L. Nie, C. Xie, Z. Yan, Colorimetric detection of trace Hg2+ with near-infrared absorbing squaraine functionalized by dibenzo-18-crown-6 and its mechanism, Spectrochim. Acta A 104 (2013) 87-91.

    19. [19]

      [19] Y. Xu, Z. Li, A. Malkovskiy, S. Sun, Y. Pang, Aggregation control of squaraines and their use as near-infrared fluorescent sensors for protein, J. Phys. Chem. B 114 (2010) 8574-8580.

    20. [20]

      [20] Y. Huang, Q. Lin, J. Wu, N. Fu, Design and synthesis of a squaraine based nearinfrared fluorescent probe for the ratiometric detection of Zn2+ ions, Dyes Pigm. 99 (2013) 699-704.

    21. [21]

      [21] W.D. Wang, A. Fu, J.S. You, et al., Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells, Tetrahedron 66 (2010) 3695-3701.

    22. [22]

      [22] J.V. Ros-Lis, R. Martínez-Máñez, F. Sancenón, et al., Squaraines as reporter units: insights into their photophysics, protonation, and metal-ion coordination behaviour, Chem. Eur. J. 14 (2008) 10101-10114.

    23. [23]

      [23] J.V. Ros-Lis, R. Martínez-Máñez, J. Soto, L.A. Villaescusa, K. Rurack, Squaraine "ships" in the Y zeolite "bottle": a chromogenic sensing material for the detection of volatile amines and thiols, J. Mater. Chem. 21 (2011) 5004-5010.

    24. [24]

      [24] S. Sreejith, K.P. Divya, A. Ajayaghosh, A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma, Angew. Chem. Int. Ed. 47 (2008) 7883-7887.

    25. [25]

      [25] C.G. Sun, Q. Lin, N.Y. Fu, A novel squaraine dye with squaramide as a scaffold and the colorimetric detection of amine, Chin. Chem. Lett. 23 (2012) 217-220.

    26. [26]

      [26] A. Ajayaghosh, E. Arunkumar, J. Daub, A highly specific Ca2+-ion sensor: signaling by exciton interaction in a rigid-flexible-rigid bichromophoric "H" foldamer, Angew. Chem. Int. Ed. 41 (2002) 1766-1769.

    27. [27]

      [27] Y. Xu, M.J. Panzner, X. Li, W.J. Youngs, Y. Pang, Host-guest assembly of squaraine dye in cucurbit[8]uril: its implication in fluorescent probe for mercury ions, Chem. Commun. 46 (2010) 4073-4075.

    28. [28]

      [28] Y. Xu, A. Malkovskiy, Q. Wang, Y. Pang, Molecular assembly of a squaraine dye with cationic surfactant and nucleotides: its impact on aggregation and fluorescence response, Org. Biomol. Chem. 9 (2011) 2878-2884.

    29. [29]

      [29] E. Arunkumar, A. Ajayaghosh, J. Daub, Selective calcium ion sensing with a bichromophoric squaraine foldamer, J. Am. Chem. Soc. 127 (2005) 3156-3164.

    30. [30]

      [30] J.V. Ros-Lis, R. Martínez-Máňez, K. Rurack, et al., Highly selective chromogenic signaling of Hg2+ in aqueous media at nanomolar levels employing a squarainebased reporter, Inorg. Chem. 43 (2004) 5183-5185.

    31. [31]

      [31] X.H. Li, B.W. Zhang, Y. Cao, Aggregation of bis(2,4,6-trihydroxyphenyl) squaraine in different solutions, Dyes Pigm. 45 (2000) 209-217.

    32. [32]

      [32] C. Chen, R. Wang, L. Guo, et al., A squaraine-based colorimetric and "turn on" fluorescent sensor for selective detection of Hg2+ in an aqueous medium, Org. Lett. 13 (2011) 1162-1165.

    33. [33]

      [33] G.R. Clemo, W.H. Perkin, LXXIV.-Introduction of the chloroethyl group into phenols, alcohols, and amino-compounds, J. Chem. Soc. Trans. 121 (1922) 642-649.

    34. [34]

      [34] M. Matsui, K. Nagasaka, S. Tokunaga, et al., 3-Aryl-4-hydroxycyclobut-3-ene-1,2-diones as sensitizers for TiO solar cell, Dyes Pigm. 58 (2003) 219-226.

  • 加载中
    1. [1]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    2. [2]

      Mengyu CaoYiyan YinJingyi QinJin OuyangNa Na . Unconventional application of a fluorescent probe for MS-based detection of multiple sulfur species in ferroptosis. Chinese Chemical Letters, 2026, 37(1): 111260-. doi: 10.1016/j.cclet.2025.111260

    3. [3]

      Meitong WuKe WuShumin FengLi XuMi LeiJianmei ChenShuang LiMian QinDahui LiuGuoqiang Feng . A NIR and ratiometric fluorescent probe for quantitative detection of SO2 derivatives in Chinese medicinal materials and bioimaging in vivo. Chinese Chemical Letters, 2026, 37(1): 110979-. doi: 10.1016/j.cclet.2025.110979

    4. [4]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    5. [5]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    6. [6]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    7. [7]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    8. [8]

      Qian PangFangjun HuoYongkang YueCaixia Yin . ONOO and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713

    9. [9]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    10. [10]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    11. [11]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    12. [12]

      Xinyi ZhaoYuai DuanZihan LiuHua GengYaping LiZhongfeng LiTianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617

    13. [13]

      Chengcheng ZhangZhe WuNingning JiangYi SongWeina GengHongmei LiuMing JinShuxiang WangJinchao ZhangYutao Yang . A fluorescent probe regulated by trifluoromethyl and nitrogen-containing heterocycles for monitoring biothiol fluctuations in the brains of mice with schizophrenia. Chinese Chemical Letters, 2026, 37(1): 111476-. doi: 10.1016/j.cclet.2025.111476

    14. [14]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    15. [15]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    16. [16]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    17. [17]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    18. [18]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    19. [19]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    20. [20]

      Yi-Xin ZhangFang-Qi ZhangAo-Pei PengTao JiangYa-Xi MengYang LiShuang-Xi GuYuan-Yuan Zhu . Enantioselective recognition of amino acids in water using emission-tunable chiral fluorescent probes. Chinese Chemical Letters, 2026, 37(1): 111500-. doi: 10.1016/j.cclet.2025.111500

Metrics
  • PDF Downloads(0)
  • Abstract views(1328)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return