Citation: Ke-Rang Wang, Feng Qian, Xiao-Man Wang, Guan-Hai Tan, Rui-Xue Rong, Zhi-Ran Cao, Hua Chen, Ping-Zhu Zhang, Xiao-Liu Li. Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations[J]. Chinese Chemical Letters, ;2014, 25(7): 1087-1093. doi: 10.1016/j.cclet.2014.04.020 shu

Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations

  • Corresponding author: Ke-Rang Wang,  Xiao-Liu Li, 
  • Received Date: 5 March 2014
    Available Online: 9 April 2014

    Fund Project: the Foundation of Hebei Education Department (No. YQ2013006). (No. B2012201041)

  • A series of novel naphthalimide derivatives modified by amino acids and their dichloroacetamide derivatives at the 3-position have been synthesized. Their cytotoxic activities were preliminarily evaluated against Hela, A549 and K562 cells, which showed that the length of the side chains of the amino acids influenced the cytotoxic activities. Moreover, compound 7d showed a very good cytotoxic activity against A549 cells with an IC50 value of 4.78 mmol L-1. Furthermore, the UV-vis, fluorescence, and circular dichroism (CD) spectroscopies and thermal denaturation experiment indicated that compounds 6a, 6d and 7a, 7d, as DNA intercalators, exhibited binding affinities with calf-thymus DNA (Ct-DNA).
  • 加载中
    1. [1]

      [1] M.F. Braña, A. Ramos, Naphthalimides as anti-cancer agents: synthesis and biological activity, Curr. Med. Chem. -Anticancer Agents 1 (2001) 237-255.

    2. [2]

      [2] L. Ingrassia, F. Lefranc, R. Kiss, T. Mijatovic, Naphthalimides and azonafides as promising anti-cancer agents, Curr. Med. Chem. 16 (2009) 1192-1213.

    3. [3]

      [3] M. Lv, H. Xu, Overview of naphthalimide analogs as anticancer agents, Curr. Med. Chem. 16 (2009) 4797-4813.

    4. [4]

      [4] T. Mijatovic, T. Mahieu, C. Bruyère, et al., UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers, Neoplasia 10 (2008) 573-586.

    5. [5]

      [5] E.V. Quaquebeke, T. Mahieu, P. Dumont, et al., 2,2,2-Trichloro-N-({2-[2-(dimethylamino) ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-yl}carbamoyl) acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity, J. Med. Chem. 50 (2007) 4122-4134.

    6. [6]

      [6] A. Kamal, N.R. Bolla, P.S. Srikanth, A.K. Srivastava, Naphthalimide derivatives with therapeutic characteristics: a patent review, Expert. Opin. Ther. Patents 23 (2013) 299-317.

    7. [7]

      [7] S. Banerjee, E.B. Veale, C.M. Phelan, et al., Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents, Chem. Soc. Rev. 42 (2013) 1601-1618.

    8. [8]

      [8] S.Y. Tan, H. Yin, Z. Chen, X.H. Qian, Y.F. Xu, Oxo-heterocyclic fused naphthalimides as antitumor agents: synthesis and biological evaluation, Eur. J. Med. Chem. 62 (2013) 130-138.

    9. [9]

      [9] D. Mahadevan, D.W. Northfelt, P. Chalasani, et al., Phase I trial of UNBS5162, a novel naphthalimide in patients with advanced solid tumors or lymphoma, Int. J. Clin. Oncol. 18 (2013) 934-941.

    10. [10]

      [10] D.A. Tennant, R.V. Duraán, E. Gottlieb, Targeting metabolic transformation for cancer therapy, Nat. Rev. Cancer 10 (2010) 267-277.

    11. [11]

      [11] I. Papandreou, T. Goliasova, N.C. Denko, Anticancer drugs that target metabolism: is dichloroacetate the new paradigm? Int. J. Cancer 128 (2011) 1001-1008.

    12. [12]

      [12] C. Granchi, F. Minutolo, Anticancer agents that counteract tumor glycolysis, ChemMedChem 7 (2012) 1318-1350.

    13. [13]

      [13] F. Wang, M.A. Ogasawara, P. Huang, Small mitochondria-targeting molecules as anti-cancer agents, Mol. Aspects Med. 31 (2010) 75-92.

    14. [14]

      [14] J.S. Butler, P.J. Sadler, Targeted delivery of platinum-based anticancer complexes, Curr. Opin. Chem. Biol. 17 (2013) 175-188.

    15. [15]

      [15] S. Dhar, S.J. Lippard, Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 22199-22204.

    16. [16]

      [16] H.H. Xiao, L.S. Yan, Y. Zhang, et al., A dual-targeting hybrid platinum(IV) prodrug for enhancing efficacy, Chem. Commun. 48 (2012) 10730-10732.

    17. [17]

      [17] X.Xue, S.You,Q.Zhang, et al.,Mitaplatinincreases sensitivity of tumor cells tocisplatin by inducing mitochondrial dysfunction, Mol. Pharmacol. 9 (2012) 634-644.

    18. [18]

      [18] Y.C. Yang, P.H. Shang, C.M. Cheng, et al., Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: design, synthesis and biological evaluation, Eur. J. Med. Chem. 45 (2010) 4300-4306.

    19. [19]

      [19] T.W. Li, Y.C. Yang, C.M. Cheng, et al., Design, synthesis and biological evaluation of N-arylphenyl-2,2-dichloroacetamide analogues as anti-cancer agents, Bioorg. Med. Chem. Lett. 22 (2012) 7268-7271.

    20. [20]

      [20] T.W. Li, Y.C. Yong, C.M. Cheng, et al., Multi-substituted N-phenyl-2,2-dichloroacetamide analogues as anti-cancer drugs: design, synthesis and biological evaluation, Acta Pharm. Sin. 47 (2012) 354-363.

    21. [21]

      [21] J.A. Montgomery, A.T. Shortnacy, D.A. Carson, J.A. Secrist III, Synthesis and biological evaluation of irreversible inhibitors of aldose reductase, J. Med. Chem. 29 (1986) 2384-2389.

    22. [22]

      [22] E.C. Long, J.K. Barton, On demonstrating DNA intercalation, Acc. Chem. Res. 23 (1990) 271-273.

    23. [23]

      [23] X. Yang, W. Liu, W. Jin, G. Shen, R. Yu, DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone, Spectrochim. Acta A 55 (1999) 2719-2727.

    24. [24]

      [24] L.J. Xie, Y.F. Xu, F. Wang, et al., Synthesis of new amonafide analogues via coupling reaction and their cytotoxic evaluation and DNA-binding studies, Bioorg. Med. Chem. 17 (2009) 804-810.

    25. [25]

      [25] M. Kožurkovaá, D. Sabolovaá, H. Paulíkovaá, et al., DNA binding properties and evaluation of cytotoxic activity of 9,10-bis-N-substituted (aminomethyl)anthracenes, Int. J. Biol. Macromol. 41 (2007) 415-422.

    26. [26]

      [26] P. Uma Maheswari, M. Palaniandavar, DNA binding and cleavage activity of[Ru(NH3)4(diimide)]Cl2 complexes, Inorg. Chim. Acta 357 (2004) 901-912.

    27. [27]

      [27] X. Jiang, L. Shang, Z.X. Wang, S.J. Dong, Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA: pH effect, Biophys. Chem. 118 (2005) 42-50.

    28. [28]

      [28] P.U. Maheswari, M. Palaniandavar, DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines: effect of hydrogen-bonding on DNA-binding affinity, J. Inorg. Biochem. 98 (2004) 219-230.

    29. [29]

      [29] X.L. Li, Y.J. Lin, Q.Q. Wang, et al., The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: synthesis, cytotoxicity, DNA intercalation and photocleavage, Eur. J. Med. Chem. 46 (2011) 1274-1279.

    30. [30]

      [30] Z.C. Zhang, Y.Y. Yang, D.N. Zhang, et al., Acenaphtho[1,2-b]pyrrole derivatives as new family of intercalators: various DNA binding geometry and interesting antitumor capacity, Bioorg. Med. Chem. 14 (2006) 6962-6970.

    31. [31]

      [31] U. Chaveerach, A. Meenongwa, Y. Trongpanich, C. Soikum, P. Chaveerach, DNA binding and cleavage behaviors of copper(II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities, Polyhedron 29 (2010) 731-738.

  • 加载中
    1. [1]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    2. [2]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    3. [3]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    4. [4]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    5. [5]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    6. [6]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    7. [7]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    8. [8]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    11. [11]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    14. [14]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    15. [15]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    16. [16]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

Metrics
  • PDF Downloads(0)
  • Abstract views(632)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return