Citation: Yan-Hui Sun, Pei-Pei Dong, Xu Lang, Jun-Min Nan. A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system[J]. Chinese Chemical Letters, ;2014, 25(6): 915-918. doi: 10.1016/j.cclet.2014.04.013 shu

A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system

  • Corresponding author: Yan-Hui Sun, 
  • Received Date: 18 February 2014
    Available Online: 3 April 2014

    Fund Project: This study was financially supported by Guangdong Natural Science Foundation (No. S2011010005788). (No. S2011010005788)

  • Rose flower-like SnO hierarchical 3D architectures consisting of well-ordered microsheets were synthesized by a template-free and surfactant-free hydrothermal method based on the reaction between SnCl2 and NaOH in ethanol/water. The ethanol amount is a crucial factor in controlling the size and morphology of the microsheets. Ethanol can accelerate the delamination of the SnO blocks to the microsheets, and the microsheets changed from a quasi square to an octodecahedral shape with the increase of the ethanol ratio. When the volume ratio of ethanol/water is 2:1, the microstructure of SnO presents a rose flower-like hierarchical architecture with a diameter of about 40 mm, which is regularly composed of numerous well-ordered thin microsheets with octodecahedral shape, and the microsheets were formed by countless nanoparticles. A possible growth mechanism of the architectures was proposed. Moreover, SnO2 nanospheres were synthesized by a similar experiment only without NaOH, which showed that NaOH was crucial to the formation of SnOx.
  • 加载中
    1. [1]

      [1] K. Shimizu, M. Katagiri, S. Satokawa, A. Satsuma, Sintering-resistant and selfregenerative properties of Ag/SnO2 catalyst for soot oxidation, Appl. Catal. B 108/109 (2011) 39-46.

    2. [2]

      [2] J. Zhao, L. Ma, X.L. Xu, F. Feng, X.N. Li, Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2,4-difluoronitrobenzene, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.01.024.

    3. [3]

      [3] W. Zeng, B. Miao, Q. Zhou, L.Y. Lin, Hydrothermal synthesis and gas sensing properties of variety low dimensional nanostructures of SnO2, Physica E 47 (2013) 116-121.

    4. [4]

      [4] V.X. Hien, J.H. Lee, J.J. Kim, Y.W. Heo, Structure, NH3 sensing properties of SnO thin film deposited by RF magnetron sputtering, Sens. Actuators B 194 (2014) 134-141.

    5. [5]

      [5] J.Y. Liu, T. Luo, S.T. Mouli, et al., A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application, Chem. Commun. 46 (2010) 472-474.

    6. [6]

      [6] Y.F. Wang, B.X. Lei, Y.F. Hou, et al., Facile fabrication of hierarchical SnO2 microspheres film on transparent FTO glass, Inorg. Chem. 49 (2010) 1679-1686.

    7. [7]

      [7] V.G. Kravets, Spectroellipsometric and photoluminescent studies of SnOx nanostructures doped with Sm ions, J. Alloys Compd. 509 (2011) 8888-8893.

    8. [8]

      [8] X.M. Yin, L.B. Chen, C.C. Li, et al., Synthesis of mesoporous SnO2 spheres via selfassembly and superior lithium storage properties, Electrochim. Acta 56 (2011) 2358-2363.

    9. [9]

      [9] Y.J. Hu, K.X. Xu, L.Y. Kong, et al., Flame synthesis of single crystalline SnO nanoplatelets for lithiuμ-ion batteries, Chem. Eng. J. 242 (2014) 220-225.

    10. [10]

      [10] M.Z. Iqbal, F.P. Wang, H.L. Zhao, et al., Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries, Scripta Mater. 67 (2012) 665-668.

    11. [11]

      [11] K.M. Li, Y.J. Li, M.Y. Lu, C.L. Kuo, L.J. Chen, Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties, Adv. Funct. Mater. 19 (2009) 2453-2456.

    12. [12]

      [12] X. Wang, Y.J. Yang, Y. Ma, J.N. Yao, Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route, Chin. Chem. Lett. 24 (2013) 1-6.

    13. [13]

      [13] L.P. Qin, J.Q. Xu, X.W. Dong, et al., The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors, Nanotechnology 19 (2008) 185705-185712.

    14. [14]

      [14] C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass, H. Schmidt, Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles, J. Mater. Chem. 9 (1999) 253-258.

    15. [15]

      [15] H.J. Zhang, Q.Q. He, X.D. Zhu, et al., Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties, CrystEngComm 14 (2012) 3169-3176.

    16. [16]

      [16] X.W. Huang, Z.J. Liu, Y.F. Zheng, Q.L. Nie, Synthesis of SnO2 nanorods from aqueous solution: the effect of preparation conditions on the formed patterns, Chin. Chem. Lett. 21 (2010) 999-1002.

    17. [17]

      [17] X.H. Zhang, M.X. Huang, Y.J. Qiao, Synthesis of SnO2 single-layered hollow microspheres and flower like nanospheres through a facile template-free hydrothermal method, Mater. Lett. 95 (2013) 67-69.

    18. [18]

      [18] Q.Y. He, W. Zeng, Y. Wang, et al., Large scale synthesis of flower-like SnO2 nanostructures via a facile hydrothermal route, Mater. Lett. 113 (2013) 42-45.

    19. [19]

      [19] Y. Li, Y.Q. Guo, R.Q. Tan, et al., Synthesis of SnO2 nano-sheets by a template-free hydrothermal method, Mater. Lett. 63 (2009) 2085-2088.

    20. [20]

      [20] G. Sun, N.T. Wu, Y.W. Li, et al., Solvothermal synthesis and characterization of ultrathin SnO nanosheets, Mater. Lett. 98 (2013) 234-237.

    21. [21]

      [21] P.H. Sumana, A.A. Felix, H.L. Tuller, J.A. Varelaa, M.O. Orlandia, Giant chemoresistance of SnO disk-like structures, Sens. Actuators B 186 (2013) 103-108.

    22. [22]

      [22] J.H. Shin, J.Y. Song, Y.H. Kim, H.M. Park, Low temperature and self-catalytic growth of tetragonal SnO nanobranch, Mater. Lett. 64 (2010) 1120-1122.

    23. [23]

      [23] Y. Liang, H.W. Zheng, B. Fang, Synthesis and characterization of SnO with controlled flower like microstructures, Mater. Lett. 108 (2013) 235-238.

    24. [24]

      [24] M.Z. Iqbal, F.P. Wang, T. Feng, et al., Facile synthesis of self-assembled SnO nanosquare sheets and hydrogen absorption characteristics, Mater. Res. Bull. 47 (2012) 3902-3907.

    25. [25]

      [25] H. Uchiyama, H. Ohgi, H. Imai, Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system, Cryst. Growth Des. 6 (2006) 2187-2190.

    26. [26]

      [26] F.I. Pires, E. Joanni, R. Savu, et al., Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders, Mater. Lett. 62 (2008) 239-242.

  • 加载中
    1. [1]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    2. [2]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    3. [3]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    4. [4]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    5. [5]

      Zirui ZhuPeng LiuJinhua WangHongbin ZhangWei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794

    6. [6]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    7. [7]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    8. [8]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    9. [9]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    10. [10]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    11. [11]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    12. [12]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    15. [15]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    18. [18]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    19. [19]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    20. [20]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return