Citation:
Samad Khaksar, Mahmoud Tajbakhsh, Milad Gholami, Fariba Rostamnezhad. A highly effi cient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported trifl ic acid catalyst (PVPP·OTf)[J]. Chinese Chemical Letters,
;2014, 25(9): 1287-1290.
doi:
10.1016/j.cclet.2014.04.008
-
A polyvinylpolypyrrolidone supported triflic acid was shown to be useful as a recyclable heterogeneous catalyst for the rapid and efficient synthesis of quinoxaline derivatives in good-to-excellent yields. The catalyst is easily prepared, air-stable, reusable, and easily removed from the reaction mixtures.
-
Keywords:
- Quinoxaline,
- Reusable,
- Heterocyclic,
- Heterogeneous
-
-
-
[1]
[1] C.W. Lindsley, Z. Zhao, W.H. Leister, et al., Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors, Bioorg. Med. Chem. Lett. 15 (2005) 761-764.
-
[2]
[2] M. Loriga, S. Piras, P. Sanna, et al., Quinoxaline chemistry. Part 7. 2-[Aminobenzoates]-and 2-[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (1997) 157-166.
-
[3]
[3] L.E. Seitz, W.J. Suling, R.C. Reynolds, Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives, J. Med. Chem. 45 (2002) 5604-5606.
-
[4]
[4] W. He, M.R. Meyers, B. Hanney, et al., Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2. The synthesis and biological activities of RPR127963 an orally bioavailable inhibitor, Bioorg. Med. Chem. Lett. 13 (2003) 3097-3100.
-
[5]
[5] Y.B. Kim, Y.H. Kim, J.Y. Park, et al., Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues, Bioorg. Med. Chem. Lett. 14 (2004) 541-544.
-
[6]
[6] A. Katoh, T. Yoshida, J. Ohkanda, Synthesis of quinoxaline derivatives bearing the styryl and phenylethynyl groups and application to a fluorescence derivatization reagent, Heterocycles 52 (2000) 911-920.
-
[7]
[7] K.R.J. Thomas, M. Velusamy, J.T. Lin, C.H. Chuen, Y.T. Tao, Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials, Chem. Mater. 17 (2005) 1860-1866.
-
[8]
[8] S. Dailey, W.J. Feast, R.J. Peace, et al., Synthesis and device characterisation of sidechain polymer electron transport materials for organic semiconductor applications, J. Mater. Chem. 11 (2001) 2238-2243.
-
[9]
[9] J.L. Sessler, H. Maeda, T. Mizuno, et al., Quinoxaline-bridged porphyrinoids, J. Am. Chem. Soc. 124 (2002) 13474-13479.
-
[10]
[10] M.J. Crossley, L.A. Johnston, Laterally-extended porphyrin systems incorporating a switchable unit, Chem. Commun. (2002) 1122-1123.
-
[11]
[11] T. Yamaguchi, S. Matsumoto, K. Watanabe, Generation of free radicals from dihydropyranzines with DNA strand-breakage activity, Tetrahedron Lett. 39 (1998) 8311.
-
[12]
[12] J.D. Brown, The chemistry of heterocyclic compounds, quinoxalines, in: C.E. Taylor, P. Wipf (Eds.), Supplements II, John Wiley and Sons, New Jersey, 2004.
-
[13]
[13] R.S. Bhosale, S.R. Sarda, S.S. Andhapure, et al., An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst, Tetrahedron Lett. 46 (2005) 7183-7186.
-
[14]
[14] S.V. More, M.N.V. Sastry, C.C. Wang, et al., Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines, Tetrahedron Lett. 46 (2005) 6345-6348.
-
[15]
[15] Y.S. Beheshtiha, M.M. Heravi, M. Saeedi, et al., Efficient and green synthesis of 1,2-disubstituted benzimidazoles and quinoxalines using Brønsted acid ionic liquid,[(CH2)4SO3HMIM][HSO4], in water at room temperature, Synth. Commun. 40 (2010) 1216-1223.
-
[16]
[16] T.M. Potewar, S.A. Ingale, K.V. Srinivasan, Efficient synthesis of quinoxalines in the ionic liquid 1-n-butylimidazolium tetrafluoroborate ([Hbim]BF4) at ambient temperature, Synth. Commun. 38 (2008) 3601-3612.
-
[17]
[17] D. Fang, K. Gong, Z.H. Fei, X.L. Zhou, Z.L. Liu, A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid, Catal. Commun. 9 (2008) 317.
-
[18]
[18] A.E.A. Porter, A.R. Katritsky, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, 1984, pp. 157-197.
-
[19]
[19] B. Madhav, S. Narayana Murthy, V. Prakash Reddy, et al., Biomimetic synthesis of quinoxalines in water, Tetrahedron Lett. 50 (2009) 6025-6028.
-
[20]
[20] H.M. Meshram, P. Ramesh, G. Santosh Kumar, et al., One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media, Tetrahedron Lett. 51 (2010) 4313-4316.
-
[21]
[21] R. Mahesh, A.K. Dhar, T.T.V.N.V. Sasank, et al., Citric acid: an efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature, Chin. Chem. Lett. 22 (2011) 389-392.
-
[22]
[22] T.K. Huang, L. Shi, R. Wang, et al., Keggin type heteropolyacids-catalyzed synthesis of quinoxaline derivatives in water, Chin. Chem. Lett. 20 (2009) 161-164.
-
[23]
[23] A. Shaabani, A.H. Rezayan, M. Behnam, et al., Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid, C. R. Chim. 12 (2009) 1249-1252.
-
[24]
[24] X.Z. Zhang, J.X. Wang, Y.J. Sun, H.W. Zhan, Synthesis of quinoxaline derivatives catalyzed by PEG-400, Chin. Chem. Lett. 21 (2010) 395-398.
-
[25]
[25] P.Y. Lin, R.S. Hou, H.M. Wang, L.J. Kang, L.C. Chen, Hypervalent Iodine(III) sulfonate mediated synthesis of quinoxalines in liquid PEG-400, J. Chin. Chem. Soc. 56 (2009) 683-687.
-
[26]
[26] C. Srinivas, C.N.S.S.P. Kumar, V.J. Rao, et al., Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives, J. Mol. Catal. A: Chem. 265 (2007) 227-230.
-
[27]
[27] H.M. Meshram, G. Santosh Kumar, P. Ramesh, et al., A mild and convenient synthesis of quinoxalines via cyclization-oxidation process using DABCO as catalyst, Tetrahedron Lett. 51 (2010) 2580-2585.
-
[28]
[28] S.V. More, M.N.V. Sastry, C.F. Yao, Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: a simple, proficient and green approach for the synthesis of quinoxalines, Green Chem. 8 (2006) 91-95.
-
[29]
[29] B. Das, K. Venkateswarlu, K. Sunnel, A. Majhi, An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization-oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst, Tetrahedron Lett. 48 (2007) 5371-5374.
-
[30]
[30] S.Y. Kim, K.H. Park, Y.K. Chung, Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. (2005) 1321-1323.
-
[31]
[31] S. Khaksar, F. Rostamnezhad, A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols, Bull. Korean Chem. Soc. 33 (2012) 2581-2584.
-
[32]
[32] A. Hasaninejada, A. Zareb, M.R. Mohammadizadeha, Z. Karami, Synthesis of quinoxaline derivatives via condensation of aryl-1,2-diamines with 1,2-diketones using (N4)6Mo7O24. 4H2O as an efficient, mild and reusable catalyst, J. Iran. Chem. Soc. 1 (2009) 153-158.
-
[33]
[33] P.N. Liu, F. Xia, Q.W. Wang, Y.J. Ren, J.Q. Chen, Triflic acid adsorbed on silica gel as an efficient and recyclable catalyst for the addition of β-dicarbonyl compounds to alcohols and alkenes, Green Chem. 12 (2010) 1049-1055.
-
[34]
[34] A.D. Angelis, C. Flego, P. Ingallina, et al., Studies on supported triflic acid in alkylation, Catal. Today 65 (2001) 363-371.
-
[35]
[35] M.M. Lakouraj, F. Najafizadeh, Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction, C. R. Chim. 15 (2012) 530-532.
-
[36]
[36] M.M. Lakouraj, M. Mokhtary, Polyvinylpolypyrrolidone-bromine complex: mild and efficient polymeric reagent for bromination of activated aromatic compounds, Chin. Chem. Lett. 22 (2011) 13-17.
-
[37]
[37] M.M. Lakouraj, M. Mokhtary, Polyvinylpolypyrrolidone-bromine complex, mild and efficient polymeric reagent for selective deprotection and oxidative deprotection of silyl ethers, Lett. Org. Chem. 4 (2007) 64-67.
-
[38]
[38] A. Ghorbani-Choghamarani, G. Azadi, Polyvinylpolypyrrolidone-supported hydrogen peroxide (PVP-H2O2), silica sulfuric acid and catalytic amounts of ammonium bromide as green, mild and metal-free oxidizing media for the efficient oxidation of alcohols and sulfides, J. Iran. Chem. Soc. 4 (2011) 1082-1090.
-
[39]
[39] S. Khaksar, M. Tajbakhsh, M. Gholami, Polyvinylpolypyrrolidone-supported triflic acid (PVPP-OTf) as a new, efficient, and recyclable heterogeneous catalyst for the synthesis of bis-indolyl methane derivatives, C. R. Chim. 17 (2014) 30-34.
-
[40]
[40] S. Khaksar, E. Fattahi, E. Fattahi, Organocatalytic synthesis of amides from nitriles via the Ritter reaction, Tetrahedron Lett. 52 (2011) 5943-5946.
-
[41]
[41] S. Khaksar, S.M. Talesh, Three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in 2,2,2-trifluoroethanol, C. R. Chim. 15 (2012) 779-783.
-
[42]
[42] S. Khaksar, S.M. Vahdat, R.N. Moghaddamnejad, Pentafluorophenylammonium triflate: an efficient, practical, and cost-effective organocatalyst for the Biginelli reaction, Monatsh Chem. 143 (2012) 1671-1674.
-
[1]
-
-
-
[1]
Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428
-
[2]
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
-
[3]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[4]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[5]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[6]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[7]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[8]
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
-
[9]
Xin He , Feng Liu , Tao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621
-
[10]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[11]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[12]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[13]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[14]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[15]
Ruiheng Liang , Huizhong Wu , Zhongzheng Hu , Ge Song , Xuyang Zhang , Omotayo A. Arotiba , Minghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(665)
- HTML views(4)