Citation: Dong-Qing Xu, Zhong-Wen Pan. Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution reaction[J]. Chinese Chemical Letters, ;2014, 25(8): 1169-1173. doi: 10.1016/j.cclet.2014.04.006 shu

Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution reaction

  • Corresponding author: Zhong-Wen Pan, 
  • Received Date: 22 November 2013
    Available Online: 24 March 2014

    Fund Project:

  • A highly effective phase transfer of a quaternary ammonium gemini surfactant with ester groups ((diethylhexanedioate) diyl-α,ω-bis(dimethyl dodecyl ammonium bromide) referred to as 12-10-12) was synthesized with high yield and characterized by infrared spectroscopy, elemental analysis and 1HNMR. Then, 12-10-12 was used as a phase transfer catalyst to study the catalytic effect on the reaction of anhydrous sodium acetate and 4-methylbenzyl chloride. The possible catalytic mechanism and the influence of surfactant concentration, temperature and type are also discussed. The experimental results showed that the catalysis efficiency was more active than the traditional, single-chained surfactant, tetrabutyl ammonium bromide. It also revealed that the reaction was first-order with respect to the concentration of 4-methylbenzyl chloride. The concentration of 4-methylbenzyl chloride grew linearly with the concentration of 12-10-12 and as the reaction temperature increased. The optimum reaction time was 7 h.
  • 加载中
    1. [1]

      [1] E. Pandey, S.K. Upadhyay, Effect of micellar aggregates on the kinetics of oxidation of α-aminoacids by chloramine-T in perchloric acid medium, Colloids Surf. A: Physicochem. Eng. Asp. 269 (2005) 7-15.

    2. [2]

      [2] X.H. Zhao, Z.W. Ye, A facile synthesis of a novel energetic surfactant1-amino-3-dodecyl-1,2,3-triazolium nitrate, Chin. Chem. Lett. 25 (2014) 209-211.

    3. [3]

      [3] H.Y. Fu, M. Li, H. Chen, et al., Higher olefin hydroformylation in organic/aqueous biphasic system accelerated by double long-chain cationic surfactants, J. Mol. Catal. A: Chem. 259 (2006) 156-160.

    4. [4]

      [4] R. Zana, M. Benrraou, R. Rueff, Alkanediyl-α,ω-bis(dimethylalkylammonium bromide)surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree, Langmuir 7 (1991) 1072-1075.

    5. [5]

      [5] F.M. Menger, C.A. Littau, Gemini surfactants: a new class of self-assembling molecules, J. Am. Chem. Soc. 115 (1991) 10083-10090.

    6. [6]

      [6] Q. Xu, L.Y. Wang, F.L. Xing, Synthesis and properties of dissymmetric gemini surfactants, J. Surfact. Deterg. 14 (2011) 85-90.

    7. [7]

      [7] C.J. Kuo, L.H. Lin, Preparation and properties of new ester-linked cleavable gemini surfactants, J. Surfact. Deterg. 14 (2011) 195-201.

    8. [8]

      [8] K. Kuperkar, J. Modi, K. Patel, Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical gemini surfactants, J. Surfact. Deterg. 15 (2012) 107-115.

    9. [9]

      [9] N. Azum, A.M. Asiri, M.A. Rub, Mixed micellization of gemini surfactant with nonionic surfactant in aqueous media: a fluorometric study, Colloid J. 75 (2013) 235-240.

    10. [10]

      [10] T. Yoshimura, T. Ichinokawa, M. Kaji, et al., Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants, J. Colloids Surf. A: 273 (2006) 208-212.

    11. [11]

      [11] A.R. Tehrani-Bagha, H. Oskarsson, C.G. van Ginkel, et al., Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation, J. Colloid Interface Sci. 312 (2007) 444-452.

    12. [12]

      [12] H.E. Ali, Cycloalkylation reactions of fatty amines with a,v-dihaloalkanes: role of bis-quaternary ammonium salts as phase-transfer catalysts, Catal. Commun. 8 (2007) 855-860.

    13. [13]

      [13] L.G. Qiu, A.J. Xie, Y.H. Shen, Micellar-catalyzed alkaline hydrolysis of 24-dinitrochlorobenzene in a cationic gemini surfactant, J. Colloids Surf. A. 260 (2005) 251-254.

    14. [14]

      [14] G.D. Yadav, C.K. Mistry, Oxidation of benzyl alcohol under a synergism of phase transfer catalysis and heteropolyacids, J. Mol. Catal. A. 172 (2001) 135-149.

    15. [15]

      [15] A. Bendjeriou-Sedjerari, G. Derrien, C. Charnay, et al., Contribution of 1H NMR to the investigation of the adsorption of cationic Gemini surfactants with oligooxyethylene spacer group onto silica, J. Colloid Interface Sci. 331 (2009) 281-287.

    16. [16]

      [16] T.M. Zubareva, A.V. Anikeev, E.A. Karpichev, Catalysis of the alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate by cationic dimeric surfactant micelles, Theor. Exp. Chem. 47 (2011) 108-114.

    17. [17]

      [17] G. Cerichelli, L. Luchetti, G. Mancini, G. Savelli, Cyclizations of 2-(v-bromoalkyloxy) phenoxide ions in dicationic surfactants, Langmuir 15 (1999) 2631-2634.

    18. [18]

      [18] W.A. Herrmann, C.W. Kohlpaintner, Water-soluble ligands, metal complexes, and catalysts: synergism of homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. Engl. 32 (1993) 1524-1544.

    19. [19]

      [19] B. Cornils, Bulk and fine chemicals via aqueous biphasic catalysis, J. Mol. Catal. A 143 (1999) 1-10.

    20. [20]

      [20] M. In, V. Bec, O. Aguerre-Chariol, R. Zana, Quaternary ammonium bromide surfactant oligomers in aqueous solution: self-association and microstructure, Langmuir 16 (2000) 141-148.

    21. [21]

      [21] R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci. 97 (2002) 205-253.

    22. [22]

      [22] P.A. Koya, K. Kabir-ud-Din, Ismail, Micellization and thermodynamic parameters of butanediyl-1,4-bis(tetradecyldimethylammonium bromide) gemini surfactant at different temperatures: effect of the addition of 2-methoxyethanol, J. Sol. Chem. 41 (2012) 1271-1281.

    23. [23]

      [23] X.J. Xu, J.W. Guo, X. Zhong, Synthesis and properties of novel cationic gemini surfactants with adamantane spacer, Chin. Chem. Lett. 25 (2014) 367-369.

    24. [24]

      [24] L.G. Qiu, M.J. Cheng, A.J. Xie, Y.H. Shen, Study on the viscosity of cationic gemini surfactant-nonionic polymer complex in water, J. Colloid Interface Sci. 278 (2004) 40-43.

    25. [25]

      [25] C.A. Bunton, L. Robinson, Micellar effects upon nucleophilic aromatic and aliphatic substitution, J. Am. Chem. Soc. 90 (1968) 5972-5979.

    26. [26]

      [26] P.D. Burgo, E. Junquera, E. Aicart, Mixed micellization of a nonionic-cationic surfactant system constituted by n-octyl-b-D-glucopyranoside/dodecyltrimethylammonium bromide/H2O. An electrochemical, thermodynamic, and spectroscopic study, Langmuir 20 (2004) 1587-1596.

    27. [27]

      [27] M.L. Gall, J. Lelièvre, A. Loppinet-Serani, P. Letellier, Thermodynamics and kinetics in micellar media. Reaction of the hydroxide ion with 1,3,5-trinitrobenzene in aqueous solutions of a neutral nonionic surfactant. Effect of the concentration of background electrolyte, J. Phys. Chem. B 107 (2003) 8454-8461.

    28. [28]

      [28] Q.F. Liu, M. Lu, W. Wei, Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis, Sci. China B: Chem. 52 (2009) 893-899.

    29. [29]

      [29] M. Li, H.Y. Fu, M. Yang, et al., Micellar effect of cationic gemini surfactants on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene, J. Mol. Catal. A: Chem. 235 (2005) 130-136.

  • 加载中
    1. [1]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    2. [2]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    3. [3]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    4. [4]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    5. [5]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    6. [6]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    7. [7]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    8. [8]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    9. [9]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    10. [10]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    11. [11]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    12. [12]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    13. [13]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    20. [20]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

Metrics
  • PDF Downloads(0)
  • Abstract views(732)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return