Citation: Long-Wei Liang, Ke Du, Zhong-Dong Peng, Yan-Bing Cao, Guo-Rong Hu. Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries[J]. Chinese Chemical Letters, ;2014, 25(6): 883-886. doi: 10.1016/j.cclet.2014.04.005 shu

Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries

  • Corresponding author: Ke Du, 
  • Received Date: 20 December 2013
    Available Online: 27 March 2014

  • Awell-ordered and spherical LiNi0.6Co0.2Mn0.2O2 cathode material was successfully synthesized from Ni and Mn concentration-gradient precursors via co-precipitation. The crystal structure, morphology and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and charge-discharge tests. The material delivered an initial discharge capacity of 174.3 mAh/g at 180 mA/g (1 C rate) between 2.8 and 4.3 V and more than 93.1% of that was retained after 100 cycles. In addition, it also exhibited excellent rate capability, high cut-off voltage and temperature performance.
  • 加载中
    1. [1]

      [1] W.M. Liu, G.R. Hu, Z.D. Peng, et al., Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithiuμ-ion batteries by a co-oxidation-controlled crystallization method, Chin. Chem. Lett. 22 (2011) 1099-1102.

    2. [2]

      [2] C. Delmas, M. Ménétrier, L. Croguennec, et al., An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties, Electrochim. Acta 45 (1999) 243-253.

    3. [3]

      [3] I. Koetschau, M.N. Richard, J.R. Dahn, Orthorhombic, LiMnO2 as a high capacity cathode for Li-Ion Cells, J. Electrochem. Soc. 142 (1995) 2906-2910.

    4. [4]

      [4] A.D. Robertson, S.H. Lu, W.F. Averill, J. Howard, M3+-Modified LiMn2O4 spinel intercalation cathodes I. Admetal effects on morphology and electrochemical performance, J. Electrochem. Soc. 144 (1997) 350'-3505.

    5. [5]

      [5] T. Ohzuku, A. Ueda, M. Kouguchi, Synthesis and characterization of LiAl1/4Ni3/4O2(R3m) for lithiuμ-ion (Shuttlecock) batteries, J. Electrochem. Soc. 142 (1995) 4033-4039.

    6. [6]

      [6] M. Yoshio, H. Noguchi, J. Itoh, M. Okada, T. Mouri, Preparation and properties of LiCoyMnxNi1xyO2 as a cathode for lithium ion batteries, J. Power Sources 90 (2000) 176-181.

    7. [7]

      [7] W.B. Luo, F. Zhou, X.M. Zhao, Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3-zMgzO2, LiNi1/3-zMn-Co1/3-zMgzO2, and LiNi1/3Mn1/3-zCo1/3MgzO2, Chem. Mater. 22 (2010) 1164-1172.

    8. [8]

      [8] Y.K. Sun, Z.H. Chen, H.J. Noh, et al., Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater. 11 (2012) 942-947.

    9. [9]

      [9] Z.L. Huang, J. Gao, X.M. He, J.J. Li, C.Y. Jiang, Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentrationgradient precursors, J. Power Sources 202 (2012) 284-290.

    10. [10]

      [10] G.M. Koenig Jr., I. Belharouak, H. Deng, Y.K. Sun, K. Amine, Composition-tailored synthesis of gradient transition metal precursor particles for lithiuμ-ion battery cathode materials, Chem. Mater. 23 (2011) 1954-1963.

    11. [11]

      [11] H. Cao, Y. Zhang, J. Zhang, B.J. Xia, Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries, Solid State Ionics 176 (2005) 1207-1211.

    12. [12]

      [12] J.G. Li, L. Wang, Q. Zhang, X.M. He, Synthesis and characterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ion batteries, J. Power Sources 189 (2009) 28-33.

    13. [13]

      [13] P.Y. Liao, J.G. Duh, S.R. Sheen, Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials, J. Power Sources 143 (2005) 212-218.

    14. [14]

      [14] Y. Chen, G.X. Wang, K. Konstantinov, Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries, J. Power Sources 119 (2003) 184-188.

    15. [15]

      [15] Z.L. Liu, A.S. Yu, Y. Jim, Lee, Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries, J. Power Sources 81 (1999) 416-419.

    16. [16]

      [16] P. Yue, Z.X. Wang, X.H. Li, The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution, Electrochim. Acta 95 (2013) 112-118.

    17. [17]

      [17] S.K. Zhong, W. Li, Y.H. Li, X. Tang, Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials, Trans. Nonferrous Met. Soc. China 19 (2009) 1499-1503.

    18. [18]

      [18] Y. Zhang, H. Cao, J. Zhang, B.J. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization, Solid State Ionics 177 (2006) 3303-3307.

    19. [19]

      [19] M. Dahbi, J.M. Wikberg, I. Saadoune, et al., Electrochemical behavior of LiNi1-y-zCoMnzO2 probed through structural and magnetic properties, J. Appl. Phys. 111 (2012) 023904.

    20. [20]

      [20] P. Yue, Z.X. Wang, H.J. Guo, et al., Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries, J. Solid State Electrochem. 16 (2012) 3849-3854.

    21. [21]

      [21] C.L. Gan, X.H. Hu, H. Zhan, Y.H. Zhou, Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as a cathode material for secondary lithium batteries, Solid State Ionics 176 (2005) 687-692.

    22. [22]

      [22] P. Yue, Z.X. Wang, W.J. Peng, et al., Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol. 214 (2011) 279-282.

    23. [23]

      [23] P. Yue, Z.X. Wang, W.J. Peng, et al., Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries, Scr. Mater. 65 (2011) 1077-1080.

  • 加载中
    1. [1]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    2. [2]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    3. [3]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    4. [4]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    5. [5]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    6. [6]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    7. [7]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    11. [11]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    12. [12]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    13. [13]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    14. [14]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    15. [15]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    18. [18]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    19. [19]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    20. [20]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return