Citation: Kefayat Ullah, Young-Hee Kim, Byung-Eui Lee, Sun-Bok Jo, Lei Zhu, Shu Ye, Won-Chun Oha. Visible light induced catalytic properties of CdSe-graphene nanocomposites and study of its bactericidal effect[J]. Chinese Chemical Letters, ;2014, 25(6): 941-946. doi: 10.1016/j.cclet.2014.03.050 shu

Visible light induced catalytic properties of CdSe-graphene nanocomposites and study of its bactericidal effect

  • Received Date: 11 November 2013
    Available Online: 21 March 2014

  • A novel composite, CdSe-graphene, was synthesized using facile hydrothermal method. The structural characteristics studies of the synthesized composites were investigated by X-ray diffraction (XRD), scanning electronmicroscope (SEM), transmission electronmicroscope (TEM), Brunauer, Emmett, Teller specific surface area (BET) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was investigated by the degradation of methylene blue as standard dye. The degradation of MB was calculated based on the decrease in concentration of the dye with respect to regular time intervals. The reusability tests were done to investigate the stability of the used catalysts. Additionally the antibacterial activity of CdSe-graphene was also investigated using bacterium Streptococcus aureus (S. aureus).
  • 加载中
    1. [1]

      [1] N. Talebian, M.R. Nilforoushan, E.B. Zargar, Enhanced antibacterial performance of hybrid semiconductor nanomaterials ZnO/SnO2 nanocomposites thin films, Appl. Surf. Sci. 258 (2011) 547-555.

    2. [2]

      [2] F.J. Zhang, W.C. Oh, Characterization and photonic effect of novel Ag-CNT/TiO2 composites and their bactericidal activities, Bull. Korean Chem. Soc. 31 (2010) 1981-1987.

    3. [3]

      [3] S.W. Krasner, H.S. Weinberg, S.D. Richardson, et al., Occurrence of a new generation of disinfection byproduct, Environ. Sci. Technol. 40 (2006) 7175-7185.

    4. [4]

      [4] S.I. Abou-Elela, H.S. Ibrahim, M.M. Kamel, M. Gouda, Application of nanometal oxides in situ in nonwoven polyester fabric for the removal of bacterial indicators of pollution from wastewater, Sci. World J. 2014 (2014) 950348.

    5. [5]

      [5] L.B. Reutergardh, M. Iangphasuk, Photocatalytic decolorization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis, Chemosphere 35 (1997) 585-596.

    6. [6]

      [6] K. Ullah, L. Zhu, Z.D. Meng, et al., A facile and fast synthesis of novel composite Pt-graphene/TiO2 with enhanced photocatalytic activity under UV/visible light, Chem. Eng. J. 231 (2013) 76-83.

    7. [7]

      [7] K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.K. Cheung, A.N. Cartwright, Subbandgap photoconductivity in ZnO epilayers and extraction of trap density spectra, Semicond. Sci. Technol. 21 (2006) 717-723.

    8. [8]

      [8] K. Ullah, S. Ye, L. Zhu, et al., Microwave assisted synthesis of a noble metalgraphene hybrid photocatalyst for high decomposition of organic dyes under visible light, Mater. Sci. Eng. B 180 (2014) 20-26.

    9. [9]

      [9] Z.D. Meng, L. Zhu, S. Ye, et al., Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light, Nanoscale Res. Lett. 8 (2013) 189.

    10. [10]

      [10] T. Ghosh, K. Ullah, J.H. Lee, et al., Graphene oxide based CdSe photocatalysts: synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye, Mater. Res. Bull. 48 (2013) 1268-1274.

    11. [11]

      [11] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

    12. [12]

      [12] Z.D. Meng, L. Zhu, K. Ullah, et al., Enhanced visible light photocatalytic activity of Ag2S-graphene/TiO2 nanocomposites made by sonochemical synthesis, Chin. J. Catal. 34 (2013) 1527-1533.

    13. [13]

      [13] S.Y. Shchyogolev, N.G. Khlebtsov, B.I. Schwartsburd, Spectroturbidimitry as applied to biomedical and immunological investigations, in: Proc. SPIE 1981, Optical Methods of Biomedical Diagnostics and Therapy, SPIE, Saratov, Russia, 1993.

    14. [14]

      [14] T. Ghosh, K. Ullah, V. Nikam, et al., The characteristic study and sonocatalytic performance of CdSe-graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions, Ultrason. Sonochem. 20 (2013) 768-776.

    15. [15]

      [15] C. Yogi, K. Kojima, N. Wada, et al., Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films 516 (2008) 5004-5881.

    16. [16]

      [16] L.L. Zhang, Y.L. Nie, C. Hu, X.X. Hu, Decolorization of methylene blue in layered manganese oxide suspension with H2O2, J. Hazard. Mater. 190 (2011) 780-785.

    17. [17]

      [17] Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2 coated activated carbon and kinetic study, Water Res. 40 (2006) 1119-1126.

    18. [18]

      [18] R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry, 2nd ed., John Wiley and Sons, New York, 2002.

    19. [19]

      [19] T. Ghosh, W.C. Oh, Review on reduced graphene oxide by chemical exfoliation method and its simpler alternative of ultrasonication and heat treatment method for obtaining graphene, J. Photocatal. Sci. 3 (2012) 17-23.

    20. [20]

      [20] T. Ghosh, K.Y. Cho, K. Ullah, et al., High photonic effect of organic dye degradation by CdSe-graphene-TiO2 particles, J. Ind. Eng. Chem. 19 (2013) 797-805.

    21. [21]

      [21] S. Makhluf, R. Dror, Y. Nitzan, et al., Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide, Adv. Funct. Mater. 15 (2005) 1708-1715.

    22. [22]

      [22] M.S. Wong, W.C. Chu, D.S. Sun, et al., Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microb. 72 (2006) 6111-6116.

    23. [23]

      [23] S.A. Vanalakar, S.S. Mali, R.C. Pawar, et al., Synthesis of cadmium sulfide spongy balls with nanoconduits for effective light harvesting, Electrochim. Acta 56 (2011) 2762-2768.

    24. [24]

      [24] A. Benayad, H.J. Shin, H.K. Park, et al., Controlling work function of reduced graphite oxide with Au-ion concentration, Chem. Phys. Lett. 475 (2009) 91-95.

  • 加载中
    1. [1]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    14. [14]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    15. [15]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    16. [16]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    19. [19]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(0)
  • Abstract views(709)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return