Citation: Lei Ma, Shu Liu, Niu-Sheng Xu, Ya-Qiu Jiang, Feng-Rui Song, Zhi-Qiang Liu. Interactions of ginsenosides with DNA duplexes:A study by electrospray ionization mass spectrometry and UV absorption spectroscopy[J]. Chinese Chemical Letters, ;2014, 25(8): 1179-1184. doi: 10.1016/j.cclet.2014.03.049 shu

Interactions of ginsenosides with DNA duplexes:A study by electrospray ionization mass spectrometry and UV absorption spectroscopy

  • Corresponding author: Ya-Qiu Jiang, 
  • Received Date: 2 December 2013
    Available Online: 20 March 2014

    Fund Project:

  • The non-covalent complexes of duplexes DNA and 9 ginsenosides (1 aglycone and 8 glycosides) were investigated using electrospray ionization mass spectrometry (ESI-MS) in the gas phase. The results of relative binding affinities in negative ion mode revealed that several factors impact on the duplexbinding properties of ginsenosides. Glycosylations of 20(S)-protopanaxadiol ginsenosides at the position C-20 and 20(S)-protopanaxatriol classification at the position C-6 enhanced the fraction of bound DNA sharply. A rhamnose moiety shows little lower binding intensities than glucose at the same position. Ginsenosides of 20(S)-protopanaxatriol result in subtle higher binding affinities toward the duplex DNA than 20(S)-protopanaxadiol family. However, glycosylation with two sugar moieties does not show a higher binding affinity than with only one moiety. The collision-induced dissociation experimental data demonstrate the gas-phase stability and fragmentation patterns of the ginsenoside/DNA complexes are related to the glycoside number. Positive ion ESI mass spectra of the complexes were also recorded. The result of ESI-MS suggests that hydrogen bonds are the dominate interaction between ginsenosides and DNA. Similar results were obtained in solution-phase by UV spectroscopy, which exhibit a hyperchromism and blue-shift effect when DNA solution was titrated by individual ginsenoside.
  • 加载中
    1. [1]

      [1] L. Strekowski, B. Wilson, Noncovalent interactions with DNA: an overview, Mutat. Res. 623 (2007) 3-13.

    2. [2]

      [2] K.E. Erkkila, D.T. Odom, J.K. Barton, Recognition and reaction of metallo intercalators with DNA, Chem. Rev. 99 (1999) 2777-2796.

    3. [3]

      [3] X. Tian, F.J. Li, L. Zhu, B.X. Ye, Study on the electrochemical behavior of anticancer herbal drug Rutin andits interactionwithDNA, J. Electroanal. Chem. 621 (2008) 1-6.

    4. [4]

      [4] W.C. Tse, D.L. Boger, Sequence-selective DNA recognition: natural products and nature's lessons, Chem. Biol. 11 (2004) 1607-1617.

    5. [5]

      [5] M. Maiti, G.S. Kumar, Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives, Med. Res. Rev. 27 (2007) 649-695.

    6. [6]

      [6] K. Gurova, New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents, Future Oncol. 5 (2009) 1685-1704.

    7. [7]

      [7] N. Fuzzati, Analysis methods of ginsenosides, J. Chromatogr. B 812 (2004) 119-133.

    8. [8]

      [8] X.M. Wang, T. Sakuma, E. Asafu-Adjaye, G.K. Shiu, Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS, Anal. Chem. 71 (1999) 1579-1584.

    9. [9]

      [9] Q.X. Guan, D.Y. Sun, J.H. Liu, et al., A new ginsengenin containing an oxacyclopentane-ring isolated from the acid hydrolysate of total ginsenosides, Chin. Chem. Lett. 24 (2013) 524-526.

    10. [10]

      [10] H. Dong, L.P. Bai, V.K.W. Wong, et al., The in vitro structure-related anti-cancer activity of ginsenosides and their derivatives, Molecules 16 (2011) 10619-10630.

    11. [11]

      [11] W. Wang, H. Wang, E.R. Rayburn, et al., 20(S)-25-Methoxyl-dammarane-3b, 12b, 20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action, Br. J. Cancer 98 (2008) 792-802.

    12. [12]

      [12] M. Li, Z.H. Miao, Z. Chen, et al., Echinoside A, a new marine-derived anticancer saponin, targets topoisomerase 2a by unique interference with its DNA binding and catalytic cycle, Ann. Oncol. 21 (2010) 597-607.

    13. [13]

      [13] L.D. Mello, R.M.S. Pereira, A.C.H.F. Sawaya, et al., Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(Ⅱ)-naringin complex, J. Pharm. Biomed. Anal. 45 (2007) 706-713.

    14. [14]

      [14] G. Psomas, Mononuclear metal complexes with ciprofloxacin: synthesis, characterization and DNA-binding properties, J. Inorg. Biochem. 102 (2008) 1798-1811.

    15. [15]

      [15] X.Y. Xu, D.D. Wang, X.J. Sun, et al., Thermodynamic and spectrographic studies on the interactions of ct-DNA with 5-fluorouracil and tegafur, Thermochim. Acta 493 (2009) 30-36.

    16. [16]

      [16] K.M. Keller, J.M. Zhang, L. Oehlers, et al., Influence of initial charge state on fragmentation patterns for noncovalent drug/DNA duplex complexes, J. Mass. Spectrom. 40 (2005) 1362-1371.

    17. [17]

      [17] C.H. Wan, M. Cui, F.R. Song, et al., A study of the non-covalent interaction between flavonoids and DNA triplexes by electrospray ionization mass spectrometry, Int. J. Mass Spectrom. 283 (2009) 48-55.

    18. [18]

      [18] W.H. Chen, C.L. Chan, Z.W. Cai, et al., Study on noncovalent complexes of cytotoxic protoberberine alkaloids with double-stranded DNA by using electrospray ionization mass spectrometry, Bioorg. Med. Chem. Lett. 14 (2004) 4955-4959.

    19. [19]

      [19] Z.F. Wang, M. Cui, F.R. Song, et al., Evaluation of flavonoids binding to DNA duplexes by electrospray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 19 (2008) 914-922.

    20. [20]

      [20] Z.F. Wang, M. Cui, F.R. Song, et al., Studies on alkaloids binding to GC-Rich human survivin promoter DNA using positive and negative ion electrospray ionization mass spectrometry, J. Mass. Spectrom. 43 (2008) 327-335.

    21. [21]

      [21] Y.L. Hsieh, Y.T. Li, J.D. Henion, B. Ganem, Studies of noncovalent interactions of actinomycin-D with single-stranded oligodeoxynucleotides by ion-spray mass-spectrometry and tandem mass-spectrometry, Biol. Mass Spectrom. 23 (1994) 272-276.

    22. [22]

      [22] C.L. Mazzitelli, Y.J. Chu, J.J. Reczek, et al., Screening of threading bis-intercalators binding to duplex DNA by electrospray ionization tandem mass spectrometry, J. Am. Soc. Mass Spectrom. 18 (2007) 311-321.

    23. [23]

      [23] F. Rosu, S. Pirotte, E.De Pauw, V.Gabelica, Positive and negative ionmode ESI/MS and MS/MS for studying drug-DNAcomplexes, Int. J.Mass Spectrom.253(2006)156-171.

    24. [24]

      [24] J.G. Wu, X. Ling, D.L. Pan, et al., Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin-evidence of survivin downregulation associated with drug sensitivity, J. Biol. Chem. 280 (2005) 9745-9751.

    25. [25]

      [25] S. Tabassum, S. Mathur, F. Arjmand, et al., Design, synthesis, characterization and DNA-binding studies of a triphenyltin(IV) complex of N-glycoside (GATPT), a sugar based apoptosis inducer: in vitro and in vivo assessment of induction of apoptosis by GATPT, Metallomics 4 (2012) 205-217.

    26. [26]

      [26] H. Hao, L.P. Bai, Z.H. Jiang, Synthesis and human telomeric G-quadruplex DNAbinding activity of glucosaminosides of shikonin/alkannin, Bioorg. Med. Chem. Lett. 22 (2012) 1582-1586.

    27. [27]

      [27] F.R. Song, C.Y. Yan, N. Liu, et al., Studies on the interaction between single-strand oligonucleotide and ginsenosides by electrospray ionization mass spectrometry, Acta Chim. Sin. 67 (2009) 1103-1108.

    28. [28]

      [28] C. Liu, B.M. Smith, K. Ajito, et al., Sequence-selective carbohydrate-DNA interaction: dimeric and monomeric forms of the calicheamicin oligosaccharide interfere with transcription factor function, Proc. Natl. Acad. Sci. USA 93 (1996) 940-944.

    29. [29]

      [29] C. Sissi, J. Aiyar, S. Boyer, et al., Interaction of calicheamicin g1 (Ⅰ) and its related carbohydrates with DNA-protein complexes, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 10643-10648.

    30. [30]

      [30] F. Zhang, Q.Q. Zhang, W.G. Wang, X.L. Wang, Synthesis and DNA binding studies by spectroscopic and PARAFAC methods of a ternary copper(Ⅱ) complex, J. Photochem. Photobiol. A: Chem. 184 (2006) 241-249.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    4. [4]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    5. [5]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    6. [6]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    7. [7]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    8. [8]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    9. [9]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    12. [12]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    13. [13]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    14. [14]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    15. [15]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    16. [16]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    19. [19]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(695)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return