Citation:
Xuan Zhang, Xu-Dong Li. Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures[J]. Chinese Chemical Letters,
;2014, 25(6): 912-914.
doi:
10.1016/j.cclet.2014.03.041
-
A facile approach for constructing diverse architectures of unmodified C60 was developed via simple evaporation of pure C60 solution in CS2 under various poor solvent atmospheres. Diverse architectures such as belts, sheets, and starfishes were successfully constructed under different experimental conditions. C60 belts obtained under EtOH atmosphere were confirmed to be a face-centered cubic (fcc) structure. The solvent atmospheres not only slowed down the evaporation speed, but also could reorganize the self-assembly of C60 by partially re-dissolving the initially formed architectures. This concept represents a novel method for preparation of nanostructures of C60 and could also be applied for controlling of the self-assembly of other functional organic molecules.
-
Keywords:
- Fullerene,
- Self-assembly,
- Nanostructure,
- Atmosphere,
- Evaporation
-
-
-
[1]
[1] L.M. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8 (2012) 1130-1166.
-
[2]
[2] G.V. Dubacheva, C.K. Liang, D.M. Bassani, Functional monolayers from carbon nanostructures-fullerenes, carbon nanotubes, and graphene-as novel materials for solar energy conversion, Coord. Chem. Rev. 256 (2012) 2628-2639.
-
[3]
[3] S.L. Candelaria, Y.Y. Shao, W. Zhou, et al., Nanostructured carbon for energy storage and conversion, Nano Energy 1 (2012) 195-220.
-
[4]
[4] D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev. 42 (2013) 2824-2860.
-
[5]
[5] S. Kouijzer, J.L. Michels, M. van den Berg, et al., Predicting morphologies of solution processed polymer:fullerene blends, J. Am. Chem. Soc. 135 (2013) 12057-12067.
-
[6]
[6] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, et al., Morphology evolution via selforganization and lateral and vertical diffusion in polymer: fullerene solar cell blends, Nat. Mater. 7 (2008) 158-164.
-
[7]
[7] J. Peet, M.L. Senatore, A.J. Heeger, G.C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Adv. Mater. 21 (2009) 1521-1527.
-
[8]
[8] L.K. Shrestha, Q.M. Ji, T. Mori, et al., Fullerene nanoarchitectonics: from zero to higher dimensions, Chem. Asian J. 8 (2013) 1662-1679.
-
[9]
[9] S.S. Babu, H. Möhwald, T. Nakanishi, Recent progresses in morphology control of supramolecular fullerene assemblies and its applications, Chem. Soc. Rev. 39 (2010) 4021-4035.
-
[10]
[10] Z. Tan, A. Masuhara, H. Kasai, H. Nakanishi, H. Oikawa, Multibranched C60 micro/nanocrystals fabricated by reprecipitation method, Jpn. J. Appl. Phys. 47 (2008) 1426-1428.
-
[11]
[11] J. Geng, W. Zhou, P. Skelton, et al., Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires, J. Am. Chem. Soc. 130 (2008) 2527-2534.
-
[12]
[12] K. Miyazawa, Y. Kuwasaki, A. Obayashi, K. Kuwabara, C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method, J. Mater. Res. 17 (2002) 83-88.
-
[13]
[13] M. Sathish, K. Miyazawa, Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface, J. Am. Chem. Soc. 129 (2007) 13816-13817.
-
[14]
[14] X. Zhang, M. Takeuchi, Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly, Angew. Chem. Int. Ed. 48 (2009) 9646-9651.
-
[15]
[15] T. Nakanishi, K. Ariga, T. Michinobu, et al., Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains, Small 3 (2007) 2019-2023.
-
[16]
[16] T. Homma, K. Harano, H. Isobe, E. Nakamura, Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces, Angew. Chem. Int. Ed. 49 (2010) 1665-1668.
-
[17]
[17] X. Zhang, T. Nakanishi, T. Ogawa, et al., Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent, Chem. Commun. 46 (2010) 8752-8754.
-
[18]
[18] N.O. Mchedlov-Petrossyan, Fullerenes in liquid media: an unsettling intrusion into the solution chemistry, Chem. Rev. 113 (2013) 5149-5193.
-
[19]
[19] L. Wei, J.N. Yao, H.B. Fu, Solvent-assisted self-assembly of fullerene into singlecrystal ultrathin microribbons as highly sensitive UV-visible photodetectors, ACS Nano 7 (2013) 7573-7582.
-
[20]
[20] M.D. Doganci, H.Y. Erbil, Shape and diameter control of C60 fullerene micro-stains by evaporation of aqueous SDS-fullerene dispersion drops, Colloid Surf. A 432 (2013) 104-109.
-
[21]
[21] C. Park, H.J. Song, H.C. Choi, The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures, Chem. Commun. (2009) 4803-4805.
-
[1]
-
-
-
[1]
Nianqiang Jiang , Yiqiang Ou , Yanpeng Zhu , Dingyong Zhong , Jiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004
-
[2]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[3]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[4]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[5]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[6]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[7]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[8]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[9]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[10]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[11]
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
-
[12]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[13]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[14]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[15]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[16]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[17]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[18]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[19]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[20]
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(709)
- HTML views(3)