Citation: Shao-Hua Liu, Wei Peng, Yan-Yan Qu, Dan Xu, Hong-Yue Li, Dun-Lun Song, Hong-Xia Duan, Xin-Ling Yang. Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group[J]. Chinese Chemical Letters, ;2014, 25(7): 1017-1020. doi: 10.1016/j.cclet.2014.03.026 shu

Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group

  • Corresponding author: Xin-Ling Yang, 
  • Received Date: 18 December 2013
    Available Online: 7 March 2014

    Fund Project: This work was financially supported by the National Basic Research Program of China (No. 2010CB126104). (No. 2010CB126104)

  • A series of novel neonicotinoid analogues were designed and synthesized by introducing a hydrazide group into clothianidin. Their structures were confirmed by IR, 1H NMR, and HRMS (ESI). Preliminary bioassay showed that some compounds, 5b and 5g, exhibited good activity against soybean aphids (Aphis glycines) at 100 mg L 1. In addition, molecular docking with receptor was carried out to explain their different activity from clothianidin.
  • 加载中
    1. [1]

      [1] J.E.C. Jepson, L.A. Brown, D.B. Sattelle, The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster, Invert. Neurosci. 6 (2006) 33-40.

    2. [2]

      [2] S. Kagabu, R. Ishihara, Y. Hieda, K. Nishimura, Y. Naruse, Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related neonicotinoids and the relationship topartition coefficient and charge density on the pharmacophore, J. Agric. Food Chem. 55 (2007) 812-818.

    3. [3]

      [3] K. Kiriyama, K. Nishimura, Structural effects of dinotefuran and analogues in insecticidal and neural activities, Pest Manage. Sci. 58 (2002) 669-676.

    4. [4]

      [4] M. Tomizawa, D.L. Lee, J.E. Casida, Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors, J. Agric. Food Chem. 48 (2000) 6016-6024.

    5. [5]

      [5] S.J. Lee, M. Tomizawa, J.E. Casida, Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel, J. Agric. Food Chem. 51 (2003) 2646-2652.

    6. [6]

      [6] M. Tomizawa, J.E. Casida, Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors, Annu. Rev. Entomol. 48 (2003) 339-364.

    7. [7]

      [7] A. Elbert, M. Schindler, R. Nauen, P. Jeschke, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.

    8. [8]

      [8] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.

    9. [9]

      [9] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.

    10. [10]

      [10] A. Elbert, R. Nauen, Resistance of bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special referenceto neonicotinoids, Pest Manage. Sci. 56 (2000) 60-64.

    11. [11]

      [11] K.D. Ninsin, Acetamiprid resistance and cross-resistance in the diamondback moth, plutella xylostella, Pest Manage. Sci. 60 (2004) 839-841.

    12. [12]

      [12] D.M. Sanchez, R.M. Hollingworth, E.J. Grafius, D.D. Moyer, Resistance and crossresistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), Pest Manage. Sci. 62 (2006) 30-37.

    13. [13]

      [13] K.G. Gorman, G. Devine, J. Bennison, et al., Report of resistance to the neonicotinoid insecticide imidacloprid in trialeurodes vaporariorum (Hemiptera: Aleyrodidae), Pest Manage. Sci. 63 (2007) 555-558.

    14. [14]

      [14] G. Arnold, J. Pistorius, T. Steeger, H. Thompson, Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe, EFSA J. 10 (2012) 2752-2779.

    15. [15]

      [15] Z. Ye, S. Xia, X. Shao, et al., Design, synthesis, crystal structure analysis, and insecticidal evaluation of phenylazoneonicotinoids, J. Agric. Food Chem. 59 (2011) 10615-10623.

    16. [16]

      [16] W. Zhang, X. Yang, W. Chen, et al., Design, multicomponent synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold, J. Agric. Food Chem. 58 (2010) 2741-2745.

    17. [17]

      [17] N.Y. Chen, L.P. Ren, M.M. Zou, et al., Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs, Chin. Chem. Lett. 25 (2014) 197-200.

    18. [18]

      [18] C. Sun, J. Zhu, H. Wang, et al., Chiral 1,5-disubstituted 1,3,5-hexahydrotriazine-2-N-nitroimine analogues as novel potent neonicotinoids: synthesis, insecticidal evaluation and molecular docking studies, Eur. J. Med. Chem. 46 (2011) 11-20.

    19. [19]

      [19] Y. Nakagawa, K. Takahashi, H. Kishikawa, et al., Classical and three-dimensional QSAR for the inhibition of [3H] ponasterone A binding by diacylhydrazine-type ecdysone agonists to insect Sf-9 cells, Bioorg. Med. Chem. 13 (2005) 1333-1340.

    20. [20]

      [20] C. Minakuchi, Mode of action of nonsteroidal ecdysone agonists, diacylhydrazine analogs, J. Pestic. Sci. 30 (2005) 228-238.

    21. [21]

      [21] X. Liu, L. Zhang, J.G. Tan, H.H. Xu, Design and synthesis of N-alkyl-N'-substituted 2,4-dioxo-3,4-dihydropyrimidin-1-diacylhydrazine derivatives as ecdysone receptor agonist, Bioorg. Med. Chem. 21 (2013) 4687-4697.

    22. [22]

      [22] Z. Huang, Y. Liu, Y. Li, et al., Synthesis, crystal structures, insecticidal activities, and structure-activity relationships of novel N'-tert-Butyl-N'-substituted-benzoyl-N-[di(octa) hydro] benzofuran{(2,3-dihydro) benzo[1,3] ([1,4]) dioxine} carbohydrazide derivatives, J. Agric. Food Chem. 59 (2011) 635-644.

    23. [23]

      [23] W.S. Abbott, A method of computing the effectiveness of an insecticide, J. Econ. Entomol. 18 (1995) 265-267.

    24. [24]

      [24] T.T. Talley, M. Harel, R.E. Hibbs, et al., Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 7606-7611.

    25. [25]

      [25] H.X. Duan, W.W. Zhang, J. Zhao, et al., A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition, J. Mol. Model. 18 (2012) 3867-3875.

    26. [26]

      [26] L. Sun, Y. Ling, C. Wang, et al., Synthesis and biological activities of E-β-Farnesene analogues containing substituent nitroguanidine, Chin. J. Org. Chem. 31 (2011) 2061-2066.

    27. [27]

      [27] J.D. Schmitt, C.G.V. Sharples, W.S. Caldwell, Molecular recognition in nicotinic acetylcholine receptors: the importance of π-cation interactions, J. Med. Chem. 42 (1999) 3066-3074.

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    3. [3]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    4. [4]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    5. [5]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    6. [6]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    7. [7]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    10. [10]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    11. [11]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    12. [12]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    17. [17]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    18. [18]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    19. [19]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    20. [20]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

Metrics
  • PDF Downloads(0)
  • Abstract views(640)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return