Citation: Chuan-Cai Fan, Li-Jin Xu, Han-Yuan Gong. Neutral C-H bond vs. electron pair of N(sp2):A binding site effect study of macrocycle anion receptor[J]. Chinese Chemical Letters, ;2014, 25(8): 1125-1131. doi: 10.1016/j.cclet.2014.03.019 shu

Neutral C-H bond vs. electron pair of N(sp2):A binding site effect study of macrocycle anion receptor

  • Corresponding author: Li-Jin Xu,  Han-Yuan Gong, 
  • Received Date: 7 January 2014
    Available Online: 21 February 2014

    Fund Project:

  • To evaluate the effect of neutral C-H bond or electron pair of nitrogen atom with sp2 hybridization (N(sp2)) involving into the same chemical environment for anion binding, two analogous tetracationic imidazolium macrocycles, namely cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine) [2](1,3-dimethylenebenzene) (14+), and cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine)[2](2,6-di methylenepyridine) (24+) were studied in detail as small inorganic anion receptors. The guest anions with different shapes are Cl-, N3-, NO3-, and H2PO4-. The host-guest interactions were characterized via 1H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and single crystal X-ray crystallography. The results implied that macrocyclic hosts with similar backbone but two distinct binding sites (14+ with neutral C-H vs. 24+ with N (sp2)) vary markedly in their response to anions, including the binding modes and association constants. The finding will serve to the construction of new anion receptors, even improve insights into the anion binding process in biology.
  • 加载中
    1. [1]

      [1] (a) H. Juwarker, K.S. Jeong, Anion-controlled foldamers, Chem. Soc. Rev. 39 (2010) 3664-3674; (b) L. Li, T.L. Hu, Y.F. Zeng, X.H. Bu, Novel coordination polymers with 1,4-di(benzimidazole-1-yl) benzene modulated by an anion: syntheses, structures and properties, Sci. China Ser. B: Chem. 53 (2010) 2170-2176; (c) H.T. Chifotides, K.R. Dunbar, Anion-p interactions in supramolecular architectures, Acc. Chem. Res. 46 (2013) 894-906; (d) J.V. Gavette, N.S. Mills, L.N. Zakharov, et al., An anion-modulated three-way supramolecular switch that selectively binds dihydrogen phosphate, H2PO4, Angew. Chem. Int. Ed. 125 (2013) 10460-10464; (e) X.M. Liu, Q. Zhao, Y. Li, et al., Two new indole derivatives as anion receptors for detecting fluoride ion, Chin. Chem. Lett. 24 (2013) 962-966; (f) Z.Y. Dong, D.W. Zhang, X.Z. Jiang, H. Li, G.H. Gao, A viologen-urea-based anion receptor: colorimetric sensing of dicarboxylate anions, Chin. Chem. Lett. 24 (2013) 688-690.

    2. [2]

      [2] (a) R. Dutzler, E.B. Campbell, M. Cadene, B.T. Chait, R. Mackinnon, X-Ray structure of a ClC chloride channel at 3.0Å reveals the molecular basis of anion selectivity, Nature 415 (2002) 287-294; (b) N.J. Robertson, H.A.I.V. Kostalik, T.J. Clark, P.F. Mutolo, H.D. Abruña, G.W. Coates, Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications, J. Am. Chem. Soc. 132 (2010) 3400-3404; (c) P.A. Gale, From anion receptors to transporters, Acc. Chem. Res. 44 (2011) 216-226; (d) N. Busschaert, P.A. Gale, Small-molecule lipid-bilayer anion transporters for biological applications, Angew. Chem. Int. Ed. 52 (2013) 1374-1382.

    3. [3]

      [3] (a) B.E. Gurkan, J.C. Fuente, E.M. Mindrup, et al., Equimolar CO2 absorption by anion-functionalized ionic liquids, J. Am. Chem. Soc. 132 (2010) 2116-2117; (b) J.J. Huang, X. Zhang, L.L. Bai, S.G. Yuan, Polyphenylene sulfide based anion exchange fiber: synthesis, characterization and adsorption of Cr(VI), J. Environ. Sci. 24 (2012) 1433-1438; (c) H.Q. Song, Y. Zhou, A.M. Li, S. Mueller, Selective removal of nitrate by using a novel macroporous acrylic anion exchange resin, Chin. Chem. Lett. 24 (2013) 603-606.

    4. [4]

      [4] (a) S.Y. Liu, F.J. Wang, L.H. Wei, et al., Synthesis and anion recognition of neutral receptors based on multiamide calix[4]arene, Sci. China Ser. B: Chem. 47 (2004) 145-151; (b) M.X. Wang, Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition, Acc. Chem. Res. 45 (2012) 182-195; (c) F. Zapata, A. Caballero, N.G. White, et al., Fluorescent charge-assisted halogen-bondingmacrocyclic halo-imidazoliumreceptors for anion recognition and sensing in aqueous media, J. Am. Chem. Soc. 134 (2012) 11533-11541; (d) C. Jin, M. Zhang, L. Wu, et al., Squaramide-based tripodal receptors for selective recognition of sulfate anion, Chem. Commun. 49 (2013) 2025-2027; (e) M. Cametti, K. Rissanen, Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state, Chem. Soc. Rev. 42 (2013) 2016-2038.

    5. [5]

      [5] (a) D.W. Yoon, D.E. Gross, V.M. Lynch, et al., Benzene-, pyrrole-, and furancontaining diametrically strapped calix[4]pyrroles-an experimental and theoretical study of hydrogen-bonding effects in chloride anion recognition, Angew. Chem. Int. Ed. 47 (2008) 5038-5042; (b) K.P. McDonald, Y.R. Hua, A.H. Flood, 1,2,3-Triazoles and the expanding utility of charge neutral CH-anion interactions, Top. Heterocycl. Chem. 24 (2010) 341-366; (c) S. Beckendorf, S. Asmus, C. Muck-Lichtenfeld, O.G. Mancheno, "Click'' bistriazoles as neutral C-H...anion-acceptor organocatalysts, Chem. Eur. J. 19 (2013) 1581-1585; (d) N.G. White, P.D. Beer, A rotaxane host system containing integrated triazole C-H hydrogen bond donors for anion recognition, Org. Biomol. Chem. 11 (2013) 1326-1333.

    6. [6]

      [6] (a) V.S. Bryantsev, B.P. Hay, Are C-H groups significant hydrogen bonding sites in anion receptors? Benzene complexes with Cl-, NO3-, and ClO4, J. Am. Chem. Soc. 127 (2005) 8282-8283; (b) V.S. Bryantsev, B.P. Hay, Influence of substituents on the strength of aryl C-H anion hydrogen bonds, Org. Lett. 7 (2005) 5031-5034; (c) L. Pedzisa, B.P. Hay, Aliphatic C-H anion hydrogen bonds: weak contacts or strong interactions, J. Org. Chem. 74 (2009) 2554-2560; (d) J. Nadas, S. Vukovic, B.P. Hay, Alkyl chlorides as hydrogen bond acceptors, Comput. Theor. Chem. 988 (2012) 75-80.

    7. [7]

      [7] Y.J. Li, A.H. Flood, Strong, size-selective, and electronically tunable C-H halide binding with steric control over aggregation from synthetically modular, shapepersistent[34] triazolophanes, J. Am. Chem. Soc. 130 (2008) 12111-12122.

    8. [8]

      [8] (a) A.I. Share, K. Parimal, A.H. Flood, Bilability is defined when one electron is used to switch between concerted and stepwise pathways in Cu(Ⅰ)-based bistable [2/3] pseudorotaxanes, J. Am. Chem. Soc. 132 (2010) 1665-1675; (b) Y. Yi, S.X. Fa, W. Cao, et al., Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Se N non-covalent interactions, Chem. Commun. 48 (2012) 7495-7497; (c) D. Sakow, B. Böker, K. Brandhorst, O. Burghaus, M. Bröring, 10-Heterocorroles: ring-contracted porphyrinoids with fine-tuned aromatic and metal-binding properties, Angew. Chem. Int. Ed. 52 (2013) 4912-4915.

    9. [9]

      [9] (a) G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press Inc., New York, 1999; (b) B.C. Gorske, J.R. Stringer, B.L. Bastian, S.A. Fowler, H.E. Blackwell, New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems, J. Am. Chem. Soc. 131 (2009) 16555-16567; (c) S.J. Grabowski, What is the covalency of hydrogen bonding? Chem. Rev. 111 (2011) 2597-2625.

    10. [10]

      [10] H.Y. Gong, B.M. Rambo, V.M. Lynch, K.M. Keller, J.L. Sessler, "Texas-sized'' molecular boxes: building blocks for the construction of anion-induced supramolecular species via self-assembly, J. Am. Chem. Soc. 135 (2013) 6330-6337.

    11. [11]

      [11] P. Job, Job's method of continuous variation, Ann. Chim. 9 (1928) 113-203.

    12. [12]

      [12] H. Friebolin, Basic One-and Two-dimensional NMR Spectroscopy, Wiley-VCH, Weinheim, NY, 2005.

    13. [13]

      [13] CrystalClear Version 1.4, A program for collecting and processing single crystal data on area detectors, in: Rigaku Americas, Inc, The Woodlands, TX, USA, 2005.

    14. [14]

      [14] A. Altomare, M.C. Burla, M. Camalli, et al., SIR97: a new tool for crystal structure determination and refinement, J. Appl. Cryst. 32 (1999) 115-119.

    15. [15]

      [15] G.M. Sheldrick, SHELX97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1994.

    16. [16]

      [16] R.I. Cooper, R.O. Gould, S. Parsons, D.J. Watkin, The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program crystals, J. Appl. Cryst. 35 (2002) 168-174.

    17. [17]

      [17] L.J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Cryst. 32 (1999) 837-838.

    18. [18]

      [18] G.M. Sheldrick, A short history of SHELX, Acta Cryst. A64 (2008) 112-122.

    19. [19]

      [19] K.A. Connors, Binding Constants, John Wiley and Sons, New York, 1987.

    20. [20]

      [20] P. Gans, A. Sabatini, A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta 43 (1996) 1739-1753.

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    3. [3]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    4. [4]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    5. [5]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    6. [6]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    11. [11]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    12. [12]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    13. [13]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    14. [14]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    18. [18]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    19. [19]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    20. [20]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

Metrics
  • PDF Downloads(0)
  • Abstract views(676)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return