Citation: Xiao-Dong Xia, Hao-Wen Huang. Using unmodifi ed Au nanoparticles as colorimetric probes for TNT based on their competitive reactions with melamine[J]. Chinese Chemical Letters, ;2014, 25(9): 1271-1274. doi: 10.1016/j.cclet.2014.03.008 shu

Using unmodifi ed Au nanoparticles as colorimetric probes for TNT based on their competitive reactions with melamine

  • Corresponding author: Xiao-Dong Xia, 
  • Received Date: 14 January 2014
    Available Online: 28 February 2014

    Fund Project: This work is supported by National Natural Science Foundation of China (No. 21375036) (No. 21375036)

  • Gold nanoparticles (Au NPs) can serve as visualized colorimetric probes for various targets and modification-free sensing strategies are preferred. The donor-acceptor interaction between the electron-rich melamine (MA) and the electron-deficient trinitrotoluene (TNT) allows formation of a supramolecule in aqueous solution. Melamine alone makes the initially individual reddish Au NPs aggregate into gray/blue Au NP assemblies due tomelamine forming multiple ligand sites toward the Au NPs. Interestingly, the preformed supramolecule of MA-TNT disenables aggregation of the Au NPs. Therefore the unmodified Au NPs provide facile colorimetric probes for TNT detection in aqueous solution. Rapid identification of TNT is established by naked eye inspection. By using spectrophotometer tools, quantification of TNT is accomplished with a linear range of 80 μmol L-1 to 1.2 μmol L-1 and a limit of detection (LOD) of 27 μmol L-1. In contrast to previous strategy with surface-modified Au NPs, here a modification-free sensing strategy for TNT assay has been developed with greater convenience, rapidity, and cost-effectiveness.
  • 加载中
    1. [1]

      [1] D.G. Gehring, J.E. Shirk, Separation and determination of trinitrotoluene isomers by gas chromatography, Anal. Chem. 39 (1967) 1315-1318.

    2. [2]

      [2] P. Sulzer, F. Petersson, B. Agarwal, et al., Proton transfer reaction mass spectrometry and the unambiguous real-time detection of 2,4,6 trinitrotoluene, Anal. Chem. 84 (2012) 4161-4166.

    3. [3]

      [3] J. Yinon, H.G. Boettger, W.P. Weber, Negative ion mass spectrometry. New analytical method for detection of trinitrotoluene, Anal. Chem. 44 (1972) 2235-2237.

    4. [4]

      [4] Y. Xia, L. Song, C. Zhu, Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly, Anal. Chem. 83 (2011) 1401-1407.

    5. [5]

      [5] H. Zhou, Z. Zhang, C. Jiang, et al., Trinitrotoluene explosive lights up ultrahigh raman scattering of nonresonant molecule on a top-closed silver nanotube array, Anal. Chem. 83 (2011) 6913-6917.

    6. [6]

      [6] W.S. Zou, D. Sheng, X. Ge, J.Q. Qiao, H.Z. Lian, Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots, Anal. Chem. 83 (2011) 30-37.

    7. [7]

      [7] Y.Q. Wang, W.S. Zou, 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution, Talanta 85 (2011) 469-475.

    8. [8]

      [8] L. Fan, Y. Hu, X. Wang, et al., Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT, Talanta 101 (2012) 192-197.

    9. [9]

      [9] S.S.R. Dasary, A.K. Singh, D. Senapati, H. Yu, P.C. Ray, Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene, J. Am. Chem. Soc. 131 (2009) 13806-13812.

    10. [10]

      [10] L. Feng, H. Li, Y. Qu, C. Lu, Detection of TNT based on conjugated polymer encapsulated in mesoporous silica nanoparticles through FRET, Chem. Commun. 48 (2012) 4633-4635.

    11. [11]

      [11] A. Mathew, P.R. Sajanlal, T. Pradeep, Selective visual detection of TNT at the subzeptomole level, Angew. Chem. Int. Ed. 51 (2012) 9596-9600.

    12. [12]

      [12] E.R. Goldman, I.L. Medintz, J.L. Whitley, et al., A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor, J. Am. Chem. Soc. 127 (2005) 6744-6751.

    13. [13]

      [13] J.J. Feng, H. Guo, Y.F. Li, et al., Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity, ACS Appl. Mater. Interfaces 5 (2013) 1226-1231.

    14. [14]

      [14] T. Lou, Z. Chen, Y. Wang, L. Chen, Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+1 via redox-regulated surface chemistry of gold nanoparticles, ACS Appl. Mater. Interfaces 3 (2011) 1568-1573.

    15. [15]

      [15] J.H. Lin, C.W. Chang, Z.H. Wu, W.L. Tseng, Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles, Anal. Chem. 82 (2010) 8775-8779.

    16. [16]

      [16] Z. Zeng, S. Mizukami, K. Kikuchi, Simple and real-time colorimetric assay for glycosidases activity using functionalized gold nanoparticles and its application for inhibitor screening, Anal. Chem. 84 (2012) 9089-9095.

    17. [17]

      [17] Y. Jiang, H. Zhao, N. Zhu, et al., A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles, Angew. Chem. Int. Ed. 47 (2008) 8601-8604.

    18. [18]

      [18] D. Lin, H. Liu, K. Qian, et al., Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles, Anal. Chim. Acta 744 (2012) 92-98.

    19. [19]

      [19] S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103 (1999) 8410-8426.

    20. [20]

      [20] B. Mukherjee, A.J. Pal, Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule, Chem. Mater. 19 (2007) 1382-1387.

    21. [21]

      [21] J. Rosenthal, J.M. Hodgkiss, E.R. Young, D.G. Nocera, Spectroscopic determination of proton position in the proton-coupled electron transfer pathways of donor-acceptor supramolecule assemblies, J. Am. Chem. Soc. 128 (2006) 10474-10483.

    22. [22]

      [22] K.B. Landenberger, A.J. Matzger, Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene, Cryst. Growth Des. 10 (2010) 5341-5347.

    23. [23]

      [23] P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B 106 (2002) 7729-7744.

    24. [24]

      [24] W. Chen, H.H. Deng, L. Hong, et al., Bare gold nanoparticles as facile and sensitive colorimetric probe for melamine detection, Analyst 137 (2012) 5382-5386.

    25. [25]

      [25] H. Chi, B. Liu, G. Guan, Z. Zhang, M.Y. Han, A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles, Analyst 135 (2010) 1070-1075.

    26. [26]

      [26] L. Li, B. Li, D. Cheng, L. Mao, Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe, Food Chem. 122 (2010) 895-900.

    27. [27]

      [27] X. Su, R. Kanjanawarut, Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection, ACS Nano 3 (2009) 2751-2759.

    28. [28]

      [28] S. Hong, I. Choi, S. Lee, et al., Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles, Anal. Chem. 81 (2009) 1378-1382.

    29. [29]

      [29] R. Kanjanawarut, X. Su, Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes, Anal. Chem. 81 (2009) 6122-6129.

    30. [30]

      [30] S.H. Wu, Y.S. Wu, C.H. Chen, Colorimetric sensitivity of gold nanoparticles: minimizing interparticular repulsion as a general approach, Anal. Chem. 80 (2008) 6560-6566.

    31. [31]

      [31] Z. Wang, R. Lévy, D.G. Fernig, M. Brust, Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening, J. Am. Chem. Soc. 128 (2006) 2214-2215.

    32. [32]

      [32] M. Wang, X. Gu, G. Zhang, D. Zhang, D. Zhu, Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles, Langmuir 25 (2009) 2504-2507.

  • 加载中
    1. [1]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Yiyang ShenZhen ZhangRuyi LiangTongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638

    4. [4]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    7. [7]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    8. [8]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    9. [9]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    10. [10]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    11. [11]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    12. [12]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    13. [13]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    14. [14]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    15. [15]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    16. [16]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    17. [17]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    18. [18]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    19. [19]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    20. [20]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

Metrics
  • PDF Downloads(0)
  • Abstract views(627)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return