Citation: Xiao-Lan Li, Dong-Ling Meng, Jiao Zhao, Ya-Ling Yang. Determination of synthetic phenolic antioxidants in essence perfume by high performance liquid chromatography with vortex-assisted, cloud-point extraction using AEO-9[J]. Chinese Chemical Letters, ;2014, 25(8): 1198-1202. doi: 10.1016/j.cclet.2014.03.005 shu

Determination of synthetic phenolic antioxidants in essence perfume by high performance liquid chromatography with vortex-assisted, cloud-point extraction using AEO-9

  • Corresponding author: Ya-Ling Yang, 
  • Received Date: 25 November 2013
    Available Online: 26 February 2014

  • This study aimed to establish a rapid analytical method to determine antioxidants in essence. A simple, efficient and practical, vortex-assisted, cloud-point extraction (VACPE) procedure is proposed for extracting and pre-concentrating four different of synthetic phenolic antioxidants (SPAs), propyl gallate (PG), tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) in essence prior to high performance liquid chromatography (HPLC) analysis. The non-ionic surfactant, fatty alcohol polyoxyethylene ether-9 (AEO-9), was used as extractant and vortex-mixing was utilized to reduce extraction time and improve extraction efficiency. The effective parameters of the extraction process, such as volume of extraction solvent, pH, vortex-mixing time, equilibration temperature and time, were optimized. Under the optimum conditions, the linear range of PG, TBHQ, BHA and BHT was 8.0-800 ng/mL. All correlation coefficients of the calibration curves were higher than 0.996 and relative standard deviations (RSD, n=5) were 2.36%-5.46%. The proposed method was successfully applied to the extraction and determination of antioxidants in essence samples with satisfactory relative recoveries of 89.4%-103.5%. The results confirmed the SPAs of essence could be effectively monitored by this method and also established good reference criteria for essence.
  • 加载中
    1. [1]

      [1] J.X. Gong, L.J. Weng, F. Wang, et al., Synthesis and antioxidant properties of novel Silybin analogues, Chin. Chem. Lett. 17 (2006) 465-468.

    2. [2]

      [2] H.C. Grice, Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium, Food Chem. Toxicol. 26 (1988) 717-723.

    3. [3]

      [3] L. Chang, P.G. Bi, Y.N. Liu, et al., Simultaneous analysis of trace polymer additives in plastic beverage packaging by solvent sublation followed by high-performance liquid chromatography, J. Agric. Food Chem. 61 (2013) 7165-7171.

    4. [4]

      [4] M. Chen, X.J. Hu, Z.G. Tai, et al., Determination of four synthetic phenolic antioxidants in edible oils by high-performance liquid chromatography with cloud point extraction using tergitol tmn-6, Food. Anal. Methods 6 (2013) 28-35.

    5. [5]

      [5] Y.Q. Guan, Q.C. Chu, L. Fu, T. Wu, J.N. Ye, Determination of phenolic antioxidants by micellar electrokinetic capillary chromatography with electrochemical detection, Food Chem. 94 (2006) 157-162.

    6. [6]

      [6] R.A. Medeiros, B.C. Lourenção, R.C. Rocha-Filho, O. Fatibello-Filho, Simple flow injection analysis system for simultaneous determination of phenolic antioxidants with multiple pulse amperometric detection at a boron-doped diamond electrode, Anal. Chem. 82 (2010) 8658-8663.

    7. [7]

      [7] J. Karovicova, P. Simko, Determination of synthetic phenolic antioxidants in food by high-performance liquid chromatography, J. Chromatogr. A 882 (2000) 271-281.

    8. [8]

      [8] R. Rodil, J.B. Quintana, G. Basaglia, M.C. Pietrogrande, R. Cela, Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography-mass spectrometry, J. Chromatogr. A 1217 (2010) 6428-6435.

    9. [9]

      [9] A. Zafra-Gómez, B. Luzón-Toro, I. Jiménez-Diaz, O. Ballesteros, A. Navalón, Quantification of phenolic antioxidants in rat cerebrospinal fluid by GC-MS after oral administration of compounds, J. Pharm. Biomed. Anal. 53 (2010) 103-108.

    10. [10]

      [10] L. Guo, M.Y. Xie, A.P. Yan, Y.Q. Wan, Y.M. Wu, Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC-MS, Anal. Bioanal. Chem. 386 (2006) 1881-1887.

    11. [11]

      [11] D. Djozan, Y. Assadi, Modified pencil lead as a new fiber for solid-phase microextraction, Chromatographia 60 (2004) 313-317.

    12. [12]

      [12] X.L. Cao, A review recent development on analytical methods for determination of bisphenol a in food and biological samples, J. Liquid Chromatogr. Related Technol. 35 (2012) 2795-2829.

    13. [13]

      [13] T.J. Klen, B.M. Vodopivec, Optimisation of olive oil phenol extraction conditions using a high-power probe ultrasonication, Food Chem. 134 (2012) 2481-2488.

    14. [14]

      [14] A. Pukalskas, T.A. van Beek, P. de Waard, Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts, J. Chromatogr. A 1074 (2005) 81-88.

    15. [15]

      [15] M. Mousavi, E. Noroozian, M. Jalali-Heravi, A. Mollahosseini, Optimization of solid-phase microextraction of volatile phenols in water by a polyaniline-coated Pt-fiber using experimental design, Anal. Chim. Acta 581 (2007) 71-77.

    16. [16]

      [16] L. Montero, S. Conradi, S.H. Weiss, P. Popp, Determination of phenols in lake and ground water samples by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A 1071 (2005) 163-169.

    17. [17]

      [17] M. Herrero, P.J. Martín-Álvarez, F.J. Señorá ns, A. Cifuentes, E. Ibáñez, Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga, Food Chem. 93 (2005) 417-423.

    18. [18]

      [18] M. Chen, Q.H. Xia, M.S. Liu, Y.L. Yang, Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils, J. Food Sci. 76 (2011) C98-C103.

    19. [19]

      [19] O.Gortzi, S. Lalas, A. Chatzilazarou, et al., Recovery of natural antioxidants fromolive mill wastewater using genapol-x080, J. Am. Oil Chem. Soc. 85 (2008) 133-140.

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    4. [4]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    5. [5]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    6. [6]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    7. [7]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    8. [8]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    9. [9]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    10. [10]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    11. [11]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    12. [12]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    13. [13]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    16. [16]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    20. [20]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

Metrics
  • PDF Downloads(0)
  • Abstract views(748)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return