Citation: Ling-Jun Li, Yu-Qin Zhang, Yang Zhang, An-Lian Zhu, Gui-Sheng Zhang. Synthesis of 5-functionalized-1,2,3-triazoles via a one-pot aerobic oxidative coupling reaction of alkynes and azides[J]. Chinese Chemical Letters, ;2014, 25(8): 1161-1164. doi: 10.1016/j.cclet.2014.03.004 shu

Synthesis of 5-functionalized-1,2,3-triazoles via a one-pot aerobic oxidative coupling reaction of alkynes and azides

  • Corresponding author: Ling-Jun Li,  Gui-Sheng Zhang, 
  • Received Date: 19 November 2013
    Available Online: 17 February 2014

    Fund Project: We are grateful to the NSFC (Nos. 21172058, 20802017) (Nos. 21172058, 20802017) HASTIT (No. 2012HASTIT10) (No. 2012HASTIT10) PCSIRT (No. IRT1061) (No. IRT1061)Key Technologies R & D Program of Henan Province (No. 112102310319) for financial support. (No. 112102310319)

  • In this paper, an efficient synthesis of 5-alkynyl-1,2,3-triazoles through a one-pot aerobic oxidative coupling reaction of various alkynes and azides has been developed. Further derivatization of 5-alkynyl-1,2,3-triazoles readily yielded 5-carbonyl-1,2,3-triazoles, 5-carboxylic-1,2,3-triazole, 5-hydroxyalkyl-1,2,3-triazoles and 5-quinoxaline-1,2,3-triazole, which provided an entry into structurally diverse 5-functionalized-1,2,3-triazoles.
  • 加载中
    1. [1]

      [1] A.H. El-Sagheer, T. Brown, Click chemistry with DNA, Chem. Soc. Rev. 39 (2010) 1388-1405.

    2. [2]

      [2] (a) M. van Dijk, D.T.S. Rijkers, R.M.J. Liskamp, C.F. van Nostrum, W.E. Hennink, Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies, Bioconjugate Chem. 20 (2009) 2001-2016; (b) V. Hong, S.I. Presolski, C. Ma, M.G. Finn, Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study, Angew. Chem. Int. Ed. 48 (2009) 9879-9883.

    3. [3]

      [3] (a) J. Lutz, 3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science, Angew. Chem. Int. Ed. 46 (2007) 1018-1025; (b) P.L. Golas, K. Matyjaszewski, Marrying click chemistry with polymerization: expanding the scope of polymeric materials, Chem. Soc. Rev. 39 (2010) 1338-1354.

    4. [4]

      [4] (a) G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308; (b) F. Amblard, J.H. Hyun Cho, R.F. Schinazi, Cu(Ⅰ)-catalyzed huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry, Chem. Rev. 109 (2009) 4207-4220.

    5. [5]

      [5] S.G. Agalave, S.R. Maujan, V.S. Pore, Click chemistry: 1,2,3-triazoles as pharmacophores, Chem. Asian J. 6 (2011) 2696-2718.

    6. [6]

      [6] R. De Simone, M.G. Chini, I. Bruno, et al., Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1,5-lipoxygenase and 5-lipoxygenaseactivating protein: promising hits for the development of new anti-inflammatory agents, J. Med. Chem. 54 (2011) 1565-1575.

    7. [7]

      [7] D. Imperio, T. Pirali, U. Galli, et al., Replacement of the lactone moiety on podophyllotoxin and steganacin analogues with a 1,5-disubstituted 1,2,3-triazole via ruthenium-catalyzed click chemistry, Bioorg. Med. Chem. 15 (2007) 6748-6757.

    8. [8]

      [8] (a) J.E. Hein, J.C. Tripp, L.B. Krasnova, K.B. Sharpless, V.V. Fokin, Copper(Ⅰ)-catalyzed cycloaddition of organic azides and 1-iodoalkynes, Angew. Chem. Int. Ed. 48 (2009) 8018-8021; (b) B.H.M. Kuijpers, G.C.T. Dijkmans, S. Groothuys, et al., Copper(Ⅰ)-mediated synthesis of trisubstituted 1,2,3-triazoles, Synlett (2005) 3059-3062; (c) J.H. Huang, S.J.F. Macdonald, J.P.A. Harrity, A cycloaddition route to novel triazole boronic esters, Chem. Commun. (2009) 436-438.

    9. [9]

      [9] (a) Y.M. Wu, J. Deng, Y. Li, Q.Y. Chen, Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(Ⅰ) salt, Synthesis (2005) 1314-1318; (b) L. Li, G. Zhang, A. Zhu, L. Zhang, A convenient preparation of 5-iodo-1,4-disubstituted-1,2,3-triazole: multicomponent one-pot reaction of azide and alkyne mediated by CuI-NBS, J. Org. Chem. 130 (2008) 3630-3633; (c) L. Li, R. Li, A. Zhu, G. Zhang, L. Zhang, CuBr-NCS-mediated azide-alkyne cycloaddition: mild and effient synthesis of 5-bromo-1,4-disubstituted-1,2,3-triazoles, Synlett (2011) 874-878; (d) R. Yan, K. Sander, E. Galante, et al., A one-pot three-component radiochemical reaction for rapid assembly of 125I-labeled molecular probes, J. Am. Chem. Soc. 135 (2013) 703-709; (e) L. Li, G. Hao, A. Zhu, S. Liu, G. Zhang, Three-component assembly of 5-halo-1,2,3-triazoles via aerobic oxidative halogenation, Tetrahedron Lett. 54 (2013) 6057-6060.

    10. [10]

      [10] (a) S. Chuprakov, N. Chernyak, A.S. Dudnik, V. Gevorgyan, Direct Pd-catalyzed arylation of 1,2,3-triazoles, Org. Lett. 9 (2007) 2333-2336; (b) L. Ackermann, R. Jeyachandran, H.K. Potukuchi, P. Novak, L. Buettner, Palladium-catalyzed dehydrogenative direct arylations of 1,2,3-triazoles, Org. Lett. 12 (2010) 2056-2059; (c) H. Jiang, Z. Feng, A. Wang, X. Liu, Z. Chen, Palladium-catalyzed alkenylation of 1,2,3-trizoles with terminal conjugated alkenes by direct C-H bond functionalization, Eur. J. Org. Chem. (2010) 1227-1230; (d) L. Ackermann, R. Vicente, R. Born, Palladium-catalyzed direct arylations of 1,2,3-triazoles with aryl chlorides using conventional heating, Adv. Synth. Catal. 350 (2008) 741-748.

    11. [11]

      [11] L. Li, C.C. Siebrands, Z. Yang, et al., Novel nucleobase-simplified cyclic ADP-ribose analogue: a concise synthesis and Ca2+-mobilizing activity in T-lymphocytes, Org. Biol. Chem. 50 (2010) 1843-1848.

    12. [12]

      [12] L. Li, G. Hao, A. Zhu, et al., A copper(Ⅰ)-catalyzed three-component domino process: assembly of complex 1,2,3-triazolyl-5-phosphonates from azides, alkynes, and hphosphates, Chem. Eur. J. 19 (2013) 14403-14406.

    13. [13]

      [13] J.C. Morris, J. Chiche, C. Grellier, et al., Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors, J. Med. Chem. 54 (2011) 6905-6918.

    14. [14]

      [14] B. Gerard, J. Ryan, A.B. Beeler, J.A. Porco Jr., Synthesis of 1,4,5-trisubstituted-1,2,3-triazoles by copper-catalyzed cycloaddition-coupling of azides and terminal alkynes, Tetrahedron 62 (2006) 6405-6411.

    15. [15]

      [15] F. Alonso, Y. Moglie, G. Radivoy, M. Yusa, lCettoerpper-catalysed multicomponent click synthesis of 5-alkynyl 1,2,3-triazoles under ambient conditions, Synlett 23 (2012) 2179-2182.

    16. [16]

      [16] L.J. Li, M. Degardin, T. Lavergne, et al., Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications, J. Am. Chem. Soc. 136 (2014) 826-829.

    17. [17]

      [17] L.J. Li, J. Wang, G. Zhang, Q. Li, A mild copper-mediated Glaser-type coupling reaction under the novel CuI/NBS/DIPEA promoting system, Tetrahedron Lett. 50 (2009) 4033-4036.

  • 加载中
    1. [1]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    2. [2]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    3. [3]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    4. [4]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    7. [7]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    8. [8]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    9. [9]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    10. [10]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    11. [11]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    12. [12]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    15. [15]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    20. [20]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

Metrics
  • PDF Downloads(0)
  • Abstract views(704)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return