Citation: Li-Yan Fan, Lin Wei, Wen-Jun Hua, Xiang-Xiong Li. Yb modified NaY zeolite:A recyclable and efficient catalyst for quinoxaline synthesis[J]. Chinese Chemical Letters, ;2014, 25(8): 1203-1206. doi: 10.1016/j.cclet.2014.03.003 shu

Yb modified NaY zeolite:A recyclable and efficient catalyst for quinoxaline synthesis

  • Corresponding author: Li-Yan Fan, 
  • Received Date: 23 December 2013
    Available Online: 21 February 2014

    Fund Project: We gratefully acknowledge the National Natural Science Foundation of China (No. 20802052) for financial support. (No. 20802052)

  • In this study, Yb immobilized NaY zeolite catalyst (Yb/NaY) was obtained by a hydrothermal method and characterized by XRD, BET, FT-IR, ICP-AES, and NH3-TPD. The catalyst displayed good catalytic activity when applied to the synthesis of quinoxalines via condensation of α-hydroxyketones with 1,2-diamines, and could be reused several times without any loss of catalytic activity.
  • 加载中
    1. [1]

      [1] A. Dell, D.H. William, H.R. Morris, et al., Structure revision of the antibiotic echinomycin, J. Am. Chem. Soc. 97 (1975) 2497-2502.

    2. [2]

      [2] W. He, M.R. Meyers, B. Hanney, et al., Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: The synthesis and biological activities of RPR127963 an orally bioavailable inhibitor, Bioorg. Med. Chem. Lett. 13 (2003) 3097-3100.

    3. [3]

      [3] Y.B. Kim, Y.H. Kim, J.Y. Park, S.K. Kim, Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues, Bioorg. Med. Chem. Lett. 14 (2004) 541-544.

    4. [4]

      [4] K.R.J. Thomas, M. Velusamy, J.T. Lin, C.H. Chuen, Y.T. Tao, Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials, Chem. Mater. 17 (2005) 1860-1866.

    5. [5]

      [5] S. Dailey, W.J. Feast, R.J. Peace, et al., Synthesis and device characterisation of sidechain polymer electron transport materials for organic semiconductor applications, J. Mater. Chem. 11 (2001) 2238-2243.

    6. [6]

      [6] K.B. Woody, B.J. Leever, M.F. Durstock, D.M. Collard, Synthesis and characterization of fully conjugated donor-acceptor-donor triblock copolymers, Macromolecules 44 (2011) 4690-4698.

    7. [7]

      [7] M. Wang, Y. Li, H. Tong, et al., Hexaazatriphenylene derivatives with tunable lowest unoccupied molecular orbital levels, Org. Lett. 13 (2011) 4378-4381.

    8. [8]

      [8] Y. Shirai, A.J. Osgood, Y.M. Zhao, et al., Surface-rolling molecules, J. Am. Chem. Soc. 128 (2006) 4854-4864.

    9. [9]

      [9] C.S. Cho, S.G. Oh, Copper-catalyzed oxidative cyclization of α-hydroxyketones with o-phenylenediamines leading to quinoxalines, J. Mol. Catal. A: Chem. 276 (2007) 205-210.

    10. [10]

      [10] R.S. Robinson, R.J.K. Taylor, Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalyzed aerobic oxidation, Synlett 6 (2005) 1003-1005.

    11. [11]

      [11] W.B. Song, P. Liu, M. Lei, et al., FeCl3 and morpholine as efficient cocatalysts for the one-step synthesis of quinoxalines from α-hydroxyketones, and 1,2-diamines, Syn. Commun. 42 (2012) 236-245.

    12. [12]

      [12] K.T.V. Rao, P.S.S. Prasad, N. Lingaiah, Iron exchanged molybdophosphoric acid as an efficient heterogeneous catalyst for the synthesis of quinoxalines, J. Mol. Catal. A: Chem. 312 (2009) 65-69.

    13. [13]

      [13] S. Kobayashi, M. Sugiura, H. Kitagawa, W.W.L. Lam, Rare-earth metal triflates in organic synthesis, Chem. Rev. 102 (2002) 2227-2302.

    14. [14]

      [14] L.M. Wang, J.J. Xia, F. Qin, T.C. Qian, J. Sun, Yb(OTf)3-catalyzed one-pot synthesis of quinazolin-4(3H)-ones from anthranilic acid, amines and ortho esters (or formic acid) in solvent-free conditions, Synthesis 8 (2003) 1241-1247.

    15. [15]

      [15] X.M. Ma, B.D. Li, M. Lu, C.X. Lv, Rare earth metal triflates catalyzed electrophilic nitration using N2O5, Chin. Chem. Lett. 23 (2012) 73-76.

    16. [16]

      [16] L.Y. Fan, W. Chen, C.T. Qian, YbCl3-catalyzed one-pot synthesis of dihydropyrazines, piperazines, and pyrazines, Tetrahedron Lett. 54 (2013) 231-234.

    17. [17]

      [17] A. Khorshidi, Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst, Chin. Chem. Lett. 23 (2012) 903-906.

    18. [18]

      [18] J. Scherrer, J.L. Bass, F.D. Hunter, Structural characterization of hydrothermally treated lanthanum Y zeolites. 1. Framework vibrational spectra and crystal structure, J. Phys. Chem. 79 (1975) 1194-1199.

    19. [19]

      [19] W.X. Guo, H.L. Jin, J.X. Chen, et al., An efficient catalyst-free protocol for the synthesis of quinoxaline derivatives under ultrasound irradiation, J. Braz. Chem. Soc. 20 (2009) 1674-1679.

    20. [20]

      [20] M.M. Heravi, M. Hosseini, H.A. Oskooie, B. Baghernejad, Fe/Al-MCM-41: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives, J. Korean Chem. Soc. 55 (2011) 235-239.

    21. [21]

      [21] J.F. Zhou, G.X. Gong, S.J. Zhi, X.L. Duan, Microwave-assisted catalyst-free and solvent-free method for the synthesis of quinoxalines, Synth. Commun. 39 (2009) 3743-3754.

    22. [22]

      [22] B. Karami, S. Khodabakhshi, M. Nikrooz, Synthesis of aza-polycyclic compounds: novel phenazines and quinoxalines using molybdate sulfuric acid (MSA), Polycycl. Aromat. Comp. 31 (2011) 97-109.

    23. [23]

      [23] S. Sithambaram, Y.S. Ding, W.N. Li, et al., Manganese octahedral molecular sieves catalyzed tandem process for synthesis of quinoxalines, Green Chem. 10 (2008) 1029-1032.

    24. [24]

      [24] E.M. Flanigen, H. Khatami, H.A. Seymenski, Infrared structural studies of zeolite frameworks, in: E.M. Flanigen, L.B. Sand (Eds.), Molecular Sieve Zeolites-I, American Chemical Society, Washington, DC, 1974, pp. 201-229.

    25. [25]

      [25] D.H. Yu, P. Sun, Z.C. Tang, Z.X. Li, H. Huang, Modification of NaY La3+ for the dehydration of lactic acid: the effect of preparation protocol on catalyst microstructure and catalytic performance, Can. J. Chem. Eng. 89 (2011) 484-490.

    26. [26]

      [26] H.J. Wang, D.H. Yu, P. Sun, et al., Rare earth metal modified NaY: structure and catalytic performance for lactic acid dehydration to acrylic acid, Catal. Commun. 9 (2008) 1799-1803.

  • 加载中
    1. [1]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    2. [2]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    3. [3]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    4. [4]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    5. [5]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return