Citation:
Xian-Liang Zhao, Ke-Fang Yang, Yan-Ping Zhang, Ju Zhu, Li-Wen Xu. Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water[J]. Chinese Chemical Letters,
;2014, 25(8): 1141-1144.
doi:
10.1016/j.cclet.2014.03.002
-
A catalyst system of Sevelamer, a phosphate-binding drug, has been prepared and used in the Knoevenagel reaction of aromatic aldehydes in water to produce substituted electrophilic alkenes. The products were obtained in excellent yields. Several novel, related catalytic systems showed promising catalytic properties for aromatic and heterocyclic aldehydes. The Sevelamer catalyst can be recovered using simple filtration and reused numerous times (up to 15 times) in the aqueous Knoevenagel reaction without any significant lowering of activity.
-
Keywords:
- Knoevenagel reaction,
- Sevelamer,
- Recycle,
- Heterogeneous
-
-
-
[1]
[1] J. Lu, P.H. Toy, Organic polymer supports for synthesis and for reagent and catalyst immobilization, Chem. Rev. 109 (2009) 815-838.
-
[2]
[2] B. Clapham, T.S. Reger, K.D. Janda, Polymer-supported catalysis in synthetic organic chemistry, Tetrahedron 57 (2001) 4637-4662.
-
[3]
[3] G. Jones, The Knoevenagel condensation, Org. React. 15 (1967) 204-599.
-
[4]
[4] L.F. Tietze, Domino reactions in organic synthesis, Chem. Rev. 96 (1996) 115-136.
-
[5]
[5] F. Freeman, Properties and reactions of ylidenemalononitriles, Chem. Rev. 80 (1980) 329-350.
-
[6]
[6] F. Bigi, L. Chesini, R. Maggi, G. Sartori, Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the Knoevenagel synthesis of coumarin-3-carboxylic acids, J. Org. Chem. 64 (1999) 1033-1035.
-
[7]
[7] G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti, A. Tolomelli, A straightforward method for the synthesis of alkylidene and arylidene malonates through prolinecatalyzed Knoevenagel condensation, Synth. Commun. 33 (2003) 1587-1594.
-
[8]
[8] B.M. Choudary, M.L. Kantam, V. Neeraja, et al., Layered double hydroxide fluoride: a novel solid base catalyst for C-C bond formation, Green Chem. 3 (2001) 257-260.
-
[9]
[9] M.B. Deshmukh, S.S. Patil, S.D. Jadhav, P.B. Pawar, Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group, Synth. Commun. 42 (2012) 1177-1183.
-
[10]
[10] P.S. Rao, R.V. Venkataratnam, Zinc chloride as a new catalyst for Knoevenagel condensation, Tetrahedron Lett. 32 (1991) 5821-5822.
-
[11]
[11] G.W. Wang, B.L. Wang, Facile synthesis of Z/E-3-arylmethylidene-2,3-dihydroindol-2-one under solvent-free conditions, Chin. J. Org. Chem. 24 (2004) 85-87.
-
[12]
[12] L. Rand, J.V. Swisher, C.J. Cronin, Reactions catalyzed by potassiumfluoride. III. The Knoevenagel reaction, J. Org. Chem. 27 (1962) 3505-3507.
-
[13]
[13] A.K. Mitra, A. De, N. Karchaudhuri, Solvent-free microwave enhanced Knoevenagel condensation of ethyl cyanoacetate with aldehydes, Synth. Commun. 29 (1999) 2731-2739.
-
[14]
[14] M.L. Kantam, B.M. Choudary, C.V. Reddy, K.K. Rao, F. Figueras, Aldol and Knoevenagel condensations catalysed by modified Mg-Al hydrotalcite: a solid base as catalyst useful in synthetic organic chemistry, Chem. Commun. (1998) 1033-1034.
-
[15]
[15] C. Xu, J.K. Bartley, D.I. Enache, D.W. Knight, G.J. Hutchings, High surface area MgO as a highly effective heterogeneous base catalyst for Michael addition and Knoevenagel condensation reactions, Synthesis (2005) 3468-3476.
-
[16]
[16] T.I. Reddy, R.S. Varma, Rare-earth (RE) exchanged NaY zeolite promoted Knoevenagel condensation, Tetrahedron Lett. 38 (1997) 1721-1724.
-
[17]
[17] H.M.S. Kumar, B.V.S. Reddy, E.J. Reddy, J.S. Yadav, SiO2 catalysed expedient synthesis of [E]-3-alkenoic acids in dry media, Tetrahedron Lett. 40 (1999) 2401-2404.
-
[18]
[18] S. Wada, H. Suzuki, Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions, Tetrahedron Lett. 44 (2003) 399-401.
-
[19]
[19] Q.L. Wang, Y.D. Ma, B. Zuo, Knoevenagel condensation catalyzed by USY zeolite, Synth. Commun. 27 (1997) 4107-4110.
-
[20]
[20] S. Sebti, A. Smahi, A. Solhy, Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation, Tetrahedron Lett. 43 (2002) 1813-1815.
-
[21]
[21] F.T. Boullet, A. Foucaud, Knoevenagel condensation catalysed by aluminium oxide, Tetrahedron Lett. 23 (1982) 4927-4928.
-
[22]
[22] G.W. Li, J. Xiao, W.Q. Zhang, Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber, Chin. Chem. Lett. 24 (2013) 52-54.
-
[23]
[23] A. Coelho, A. Crespo, F. Fernandez, et al., Synthetic applications of polystyrenesupported 1,1,3,3-tetramethylguanidine, Comb. Chem. High Throughput Screen. 11 (2008) 843-847.
-
[24]
[24] G.W. Li, J. Xiao,W.Q. Zhang, Knoevenagel condensation catalyzed by a tertiaryamine functionalized polyacrylonitrile fiber, Green Chem. 13 (2011) 1828-1836.
-
[25]
[25] B. Tamami, A. Fadavi, Amino group immobilized on polyacrylamide: an efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media, Catal. Commun. 6 (2005) 747-751.
-
[26]
[26] K.P. Boroujeni, M. Jafarinasab, Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation, Chin. Chem. Lett. 23 (2012) 1067-1070.
-
[27]
[27] X.L. Zhao, K.F. Yang, X.G. Liu, et al., Polyguanidine as a highly efficient and reusable catalyst for Knoevenagel condensation reactions in water, Aust. J. Chem. 66 (2013) 500-504.
-
[28]
[28] J.R. Mazzeo, R.M. Peters, M.R. Hanus, X. Chen, K.A. Norton, A phosphate binding assay for sevelamer hydrochloride by ion chromatography, J. Pharm. Biomed. Anal. 19 (1999) 911-915.
-
[29]
[29] R.A. Swearingen, E. Zhorov, A. Cohen, T. Sybertz, E.F. Barry, Determination of the binding parameter constants of Renagel capsules and tablets at pH 7 by high performance capillary electrophoresis, J. Pharm. Biomed. Anal. 35 (2004) 753-760.
-
[1]
-
-
-
[1]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[2]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[3]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[4]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[5]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[6]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[7]
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
-
[8]
Xin He , Feng Liu , Tao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621
-
[9]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[10]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[11]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[12]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[13]
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
-
[14]
Ruiheng Liang , Huizhong Wu , Zhongzheng Hu , Ge Song , Xuyang Zhang , Omotayo A. Arotiba , Minghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136
-
[15]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[16]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[17]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[18]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[19]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[20]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(707)
- HTML views(2)