Citation: Xian-Liang Zhao, Ke-Fang Yang, Yan-Ping Zhang, Ju Zhu, Li-Wen Xu. Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water[J]. Chinese Chemical Letters, ;2014, 25(8): 1141-1144. doi: 10.1016/j.cclet.2014.03.002 shu

Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water

  • Corresponding author: Xian-Liang Zhao,  Ke-Fang Yang, 
  • Received Date: 22 December 2013
    Available Online: 20 February 2014

    Fund Project: We gratefully acknowledge financial support by the National Natural Science Foundation of China (Nos. 21242004, 21302168). (Nos. 21242004, 21302168)

  • A catalyst system of Sevelamer, a phosphate-binding drug, has been prepared and used in the Knoevenagel reaction of aromatic aldehydes in water to produce substituted electrophilic alkenes. The products were obtained in excellent yields. Several novel, related catalytic systems showed promising catalytic properties for aromatic and heterocyclic aldehydes. The Sevelamer catalyst can be recovered using simple filtration and reused numerous times (up to 15 times) in the aqueous Knoevenagel reaction without any significant lowering of activity.
  • 加载中
    1. [1]

      [1] J. Lu, P.H. Toy, Organic polymer supports for synthesis and for reagent and catalyst immobilization, Chem. Rev. 109 (2009) 815-838.

    2. [2]

      [2] B. Clapham, T.S. Reger, K.D. Janda, Polymer-supported catalysis in synthetic organic chemistry, Tetrahedron 57 (2001) 4637-4662.

    3. [3]

      [3] G. Jones, The Knoevenagel condensation, Org. React. 15 (1967) 204-599.

    4. [4]

      [4] L.F. Tietze, Domino reactions in organic synthesis, Chem. Rev. 96 (1996) 115-136.

    5. [5]

      [5] F. Freeman, Properties and reactions of ylidenemalononitriles, Chem. Rev. 80 (1980) 329-350.

    6. [6]

      [6] F. Bigi, L. Chesini, R. Maggi, G. Sartori, Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the Knoevenagel synthesis of coumarin-3-carboxylic acids, J. Org. Chem. 64 (1999) 1033-1035.

    7. [7]

      [7] G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti, A. Tolomelli, A straightforward method for the synthesis of alkylidene and arylidene malonates through prolinecatalyzed Knoevenagel condensation, Synth. Commun. 33 (2003) 1587-1594.

    8. [8]

      [8] B.M. Choudary, M.L. Kantam, V. Neeraja, et al., Layered double hydroxide fluoride: a novel solid base catalyst for C-C bond formation, Green Chem. 3 (2001) 257-260.

    9. [9]

      [9] M.B. Deshmukh, S.S. Patil, S.D. Jadhav, P.B. Pawar, Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group, Synth. Commun. 42 (2012) 1177-1183.

    10. [10]

      [10] P.S. Rao, R.V. Venkataratnam, Zinc chloride as a new catalyst for Knoevenagel condensation, Tetrahedron Lett. 32 (1991) 5821-5822.

    11. [11]

      [11] G.W. Wang, B.L. Wang, Facile synthesis of Z/E-3-arylmethylidene-2,3-dihydroindol-2-one under solvent-free conditions, Chin. J. Org. Chem. 24 (2004) 85-87.

    12. [12]

      [12] L. Rand, J.V. Swisher, C.J. Cronin, Reactions catalyzed by potassiumfluoride. III. The Knoevenagel reaction, J. Org. Chem. 27 (1962) 3505-3507.

    13. [13]

      [13] A.K. Mitra, A. De, N. Karchaudhuri, Solvent-free microwave enhanced Knoevenagel condensation of ethyl cyanoacetate with aldehydes, Synth. Commun. 29 (1999) 2731-2739.

    14. [14]

      [14] M.L. Kantam, B.M. Choudary, C.V. Reddy, K.K. Rao, F. Figueras, Aldol and Knoevenagel condensations catalysed by modified Mg-Al hydrotalcite: a solid base as catalyst useful in synthetic organic chemistry, Chem. Commun. (1998) 1033-1034.

    15. [15]

      [15] C. Xu, J.K. Bartley, D.I. Enache, D.W. Knight, G.J. Hutchings, High surface area MgO as a highly effective heterogeneous base catalyst for Michael addition and Knoevenagel condensation reactions, Synthesis (2005) 3468-3476.

    16. [16]

      [16] T.I. Reddy, R.S. Varma, Rare-earth (RE) exchanged NaY zeolite promoted Knoevenagel condensation, Tetrahedron Lett. 38 (1997) 1721-1724.

    17. [17]

      [17] H.M.S. Kumar, B.V.S. Reddy, E.J. Reddy, J.S. Yadav, SiO2 catalysed expedient synthesis of [E]-3-alkenoic acids in dry media, Tetrahedron Lett. 40 (1999) 2401-2404.

    18. [18]

      [18] S. Wada, H. Suzuki, Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions, Tetrahedron Lett. 44 (2003) 399-401.

    19. [19]

      [19] Q.L. Wang, Y.D. Ma, B. Zuo, Knoevenagel condensation catalyzed by USY zeolite, Synth. Commun. 27 (1997) 4107-4110.

    20. [20]

      [20] S. Sebti, A. Smahi, A. Solhy, Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation, Tetrahedron Lett. 43 (2002) 1813-1815.

    21. [21]

      [21] F.T. Boullet, A. Foucaud, Knoevenagel condensation catalysed by aluminium oxide, Tetrahedron Lett. 23 (1982) 4927-4928.

    22. [22]

      [22] G.W. Li, J. Xiao, W.Q. Zhang, Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber, Chin. Chem. Lett. 24 (2013) 52-54.

    23. [23]

      [23] A. Coelho, A. Crespo, F. Fernandez, et al., Synthetic applications of polystyrenesupported 1,1,3,3-tetramethylguanidine, Comb. Chem. High Throughput Screen. 11 (2008) 843-847.

    24. [24]

      [24] G.W. Li, J. Xiao,W.Q. Zhang, Knoevenagel condensation catalyzed by a tertiaryamine functionalized polyacrylonitrile fiber, Green Chem. 13 (2011) 1828-1836.

    25. [25]

      [25] B. Tamami, A. Fadavi, Amino group immobilized on polyacrylamide: an efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media, Catal. Commun. 6 (2005) 747-751.

    26. [26]

      [26] K.P. Boroujeni, M. Jafarinasab, Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation, Chin. Chem. Lett. 23 (2012) 1067-1070.

    27. [27]

      [27] X.L. Zhao, K.F. Yang, X.G. Liu, et al., Polyguanidine as a highly efficient and reusable catalyst for Knoevenagel condensation reactions in water, Aust. J. Chem. 66 (2013) 500-504.

    28. [28]

      [28] J.R. Mazzeo, R.M. Peters, M.R. Hanus, X. Chen, K.A. Norton, A phosphate binding assay for sevelamer hydrochloride by ion chromatography, J. Pharm. Biomed. Anal. 19 (1999) 911-915.

    29. [29]

      [29] R.A. Swearingen, E. Zhorov, A. Cohen, T. Sybertz, E.F. Barry, Determination of the binding parameter constants of Renagel capsules and tablets at pH 7 by high performance capillary electrophoresis, J. Pharm. Biomed. Anal. 35 (2004) 753-760.

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    4. [4]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    5. [5]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    6. [6]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    7. [7]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    8. [8]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    9. [9]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    12. [12]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    13. [13]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    14. [14]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    15. [15]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    16. [16]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    17. [17]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    18. [18]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return