Citation: Yong Zhang, Mei-Ying Xu, Tie-Kun Jiang, Wei-Zhe Huang, Jiang-Yu Wu. Low generational polyamidoamine dendrimers to enhance the solubility of folic acid:A “dendritic effect” investigation[J]. Chinese Chemical Letters, ;2014, 25(05): 815-818. doi: 10.1016/j.cclet.2014.02.004 shu

Low generational polyamidoamine dendrimers to enhance the solubility of folic acid:A “dendritic effect” investigation

  • Corresponding author: Jiang-Yu Wu, 
  • Received Date: 20 November 2013
    Available Online: 16 January 2014

    Fund Project: The work was supported by Wuhan Institute of Technology, Wuhan Chenguang Project (No. 200950431195) (No. 200950431195)the National Natural Science Foundation of China (No. 51003081). (No. 51003081)

  • Low generational (G0-G2, G for generation) polyamidoamine (PAMAM) dendrimers were investigated as enhancers to improve the aqueous solubility of folic acid at pH 11 and pH 5. In these two cases, the solubility of folic acid increases with both the dendrimer concentration and generation. However, the solubilization mechanism is different. The electrostatic interaction between the primary amines of dendrimers and the ionized carboxylic groups of folic acid dominates the dissolution process at pH 11, while the increase of the solubility of folic acid at pH 5 is attributed to the hydrophobic encapsulation inside the dendrimer molecules. In addition, for comparison ethylenediamine was used as a small molecule control to examine the "dendritic effect" in the dendrimer-related solubilization process. Interestingly, PAMAM dendrimers exhibit, at pH 5, a significant superiority over ethylenediamine in enhancing solubility, whereas this "dendritic effect" cannot be observed under the basic condition.
  • 加载中
    1. [1]

      [1] D. Li, F. Paul, V.M. Takashi, Bridging solubility between drug discovery and development, Drug Discov. Today 17 (2012) 486-495.

    2. [2]

      [2] K.T. Savjani, A.K. Gajjar, J.K. Savjani, Drug solubility: importance and enhancement techniques, ISRN Pharm. (2012) 10 (Article ID 195727).

    3. [3]

      [3] R.T. Ajazuddin, T.K. Giri, D.K. Tripathi, V. Jain, A. Alexander, An exhaustive review on solubility enhancement for hydrophobic compounds by possible applications of novel techniques, Trends Appl. Sci. Res. 7 (2012) 596-619.

    4. [4]

      [4] S.H. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev. 109 (2009) 3141-3157.

    5. [5]

      [5] J.M.J. Frechet, D.A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, New York, 2002.

    6. [6]

      [6] Y.Y. Cheng, T.W. Xu, R.Q. Fu, Polyamidoamine dendrimers used as solubility enhancers of ketoprofen, Eur. J. Med. Chem. 40 (2005) 1390-1393.

    7. [7]

      [7] O.M. Milhem, C. Myles, N.B. McKeown, D. Attwood, A. D'Emanuele, Polyamidoamine starburst dendrimers as solubility enhancers, Int. J. Pharm. 197 (2000) 239- 241.

    8. [8]

      [8] J. Patel, K. Garala, B. Basu, M. Raval, A. Dharamsi, Solubility of aceclofenan in polyamidoamine dendrimer solutions, Int. J. Pharm. Invest. 1 (2011) 135-138.

    9. [9]

      [9] A. Filipowicz, S. Wołowiec, Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers, Int. J. Pharm. 408 (2011) 152-156.

    10. [10]

      [10] X.H. Liang, Y. Sun, L.S. Liu, et al., Regioselective synthesis and initial evaluation of a folate receptor targeted rhaponticin prodrug, Chin. Chem. Lett. 23 (2012) 1133- 1136.

    11. [11]

      [11] A. Taherkhani, H. Karimi-Maleh, A.A. Ensafi, et al., Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode, Chin. Chem. Lett. 23 (2012) 237- 240.

    12. [12]

      [12] J. Zempleni, R.B. Rucker, D.B. McCormick, J.W. Suttie, Handbook of Vitamins, 4th ed., CRC Press Inc., New York, 2007.

    13. [13]

      [13] M.J. ONeil, The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed., People's Health Publishing House, Beijing, 2006.

    14. [14]

      [14] H.F. Chow, C.F. Leung, G.X. Wang, Y.Y. Yang, Dendritic effects in functional dendrimer molecules, C. R. Chimie 6 (2003) 735-745.

    15. [15]

      [15] D.A. Tomalia, Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs), New J. Chem. 36 (2012) 264-281.

    16. [16]

      [16] D.A. Tomalia, H. Baker, J.R. Dewald, et al., Dendritic macromolecules: synthesis of starburst dendrimers, Macromolecules 19 (1986) 2466-2468.

    17. [17]

      [17] R.M.C. Dawson, Data for Biochemical Research, 3rd ed., Oxford University Press, Oxford, 1989.

    18. [18]

      [18] J.J. Hu, Y.Y. Cheng, Y.R. Ma, Q.L. Wu, T.W. Xu, Host-guest chemistry and physicochemical properties of the dendrimer-mycophenolic acid complex, J. Phys. Chem. B 113 (2009) 64-74.

  • 加载中
    1. [1]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    4. [4]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    7. [7]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    8. [8]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    9. [9]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    10. [10]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    11. [11]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    12. [12]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    17. [17]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    18. [18]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    19. [19]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    20. [20]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return