Citation: Chun-Lei Yang, Xu-Hai Zhang, Guo Lan, Lu-Yang Chen, Ming-Wei Chen, Yu-Qiao Zeng, Jian-Qing Jiang. Pd-based nanoporous metals for enzyme-free electrochemical glucose sensors[J]. Chinese Chemical Letters, ;2014, 25(4): 496-500. doi: 10.1016/j.cclet.2014.02.001 shu

Pd-based nanoporous metals for enzyme-free electrochemical glucose sensors

  • Corresponding author: Yu-Qiao Zeng, 
  • Received Date: 24 October 2013
    Available Online: 8 January 2014

    Fund Project: This work is supported by the National Science Foundation of China (Nos. 51001026, 21173041) (Nos. 51001026, 21173041) the Project-sponsored by SRF for ROCS, SEM (No. 6812000013) (No. 6812000013) the Project-sponsored by Nanjing for ROCS (No. 7912000011) (No. 7912000011) Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials (No. AMM201101) (No. AMM201101)

  • Nanoporous metals (NPMs) show potential applications as enzyme-free glucose sensors. There are few reports on nanoporous Pd in this area even though their cost is much lower than other NPMs. In this work, we report the formation of Pd-based NPM with improved catalytic activity towards the oxidation of glucose. By dealloying metallic glasses, Pd-based NPMs with bi-continuous networks were obtained. All the Pd-based NPMs show high electrochemical catalytic activity towards glucose oxidation. In this study, NPM with an open, three-dimensional, ligament-channel nanoporous structure resulted by dealloying metallic Pd30Cu40Ni10P20, producing a pore size of 11 nm and a ligament size of 7 nm as the best configuration towards the direct oxidation reaction of glucose.
  • 加载中
    1. [1]

      [1] A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chem. Rev. 108 (2008) 2482-2505.

    2. [2]

      [2] J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2008) 814-825.

    3. [3]

      [3] X.Y. Wang, S.Q. Liu, K.L. Huang, et al., Fixation of CO2 by electrocatalytic reduction to synthesis of dimethyl carbonate in ionic liquid using effective silver-coated nanoporous copper composites, Chin. Chem. Lett. 21 (2010) 987-990.

    4. [4]

      [4] S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum, Anal. Chem. 75 (2003) 3046-3049.

    5. [5]

      [5] J. Wang, D.F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb network, Anal. Chem. 80 (2003) 997-1004.

    6. [6]

      [6] S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta 556 (2006) 46-57.

    7. [7]

      [7] C.X. Xu, Y.Q. Liu, F. Su, et al., Nanoporous PtAg and PtCu alloys with hollow ligament for enhanced electrocatalysis and glucose biosensing, Biosens. Bioelectron. 27 (2011) 160-166.

    8. [8]

      [8] D. van Noort, C.F. Mandenius, Porous gold surface for biosensor applications, Biosens Bioelectron. 15 (2000) 203-209.

    9. [9]

      [9] Z. Liu, L. Huang, L. Zhang, et al., Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions, Electrochim. Acta 54 (2009) 7286-7293.

    10. [10]

      [10] Y. Ding, Y.J. Kim, J. Erlebacher, Nanoporous gold leaf: "Ancient technology"/advanced material, J. Adv. Mater. 16 (2004) 1897-1900.

    11. [11]

      [11] H.M. Yin, C.Q. Zhou, C. Xu, et al., Aerobic oxidation of D-glucose on support-free nanoporous gold, J. Phys. Chem. C 112 (2008) 9673-9678.

    12. [12]

      [12] N. Tavakkoli, S. Nasrollahi, Non-enzymatic glucose sensor based on palladium coated nanoporous gold film electrode, Aust. J. Chem. 66 (2013) 1097-1104.

    13. [13]

      [13] H.Y. Bai, M. Han, Y.Z. Du, et al., Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor, Chem. Commun. 46 (2010) 1739-1741.

    14. [14]

      [14] X. Chen, Z. Cai, Z. Lin, et al., A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes, Biosens Bioelectron. 24 (2009) 3475-3480.

    15. [15]

      [15] J. Erlebacher, An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior, J. Electrochem. Soc. 151 (2004) C614-C626.

    16. [16]

      [16] J.L. Xu, Y. Wang, Z.H. Zhang, Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions, J. Phys. Chem. C 116 (2012) 5689-5699.

    17. [17]

      [17] J. Erlebacher, M.J. Aziz, A. Karma, et al., Evolution of nanoporosity in dealloying, Nature 410 (2001) 450-453.

    18. [18]

      [18] L.H. Qian, M.W. Chen, Ultrafine nanoporous gold by low temperature dealloying and kinetics of nanopore formation, Appl. Phys. Lett. 91 (2007) 083105-183105.

    19. [19]

      [19] Y. Kuang, B. Wu, D. Hu, et al., One-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes for electrocatalytic oxidation of glucose, J. Solid State Electrochem. 16 (2012) 759-766.

    20. [20]

      [20] L.Y. Chen, X.Y. Lang, T. Fujita, et al., Nanoporous gold for enzyme-free electrochemical glucose sensors, Scr. Mater. 65 (2011) 17-20.

  • 加载中
    1. [1]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    2. [2]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    3. [3]

      Huili ZhaoXiao TanHuining ChaiLin HuHongbo LiLijun QuXueji ZhangGuangyao Zhang . Recent advances in conductive MOF-based electrochemical sensors. Chinese Chemical Letters, 2025, 36(8): 110571-. doi: 10.1016/j.cclet.2024.110571

    4. [4]

      Menglin ZhouLin ZhangXuefei ShanFengqin ChangWentong ChenXuguang AnGuangzhi Hu . Hydrangea-like B/N co-doped carbon-based electrochemical sensors for the efficient and sensitive detection of aristolochic acid in Aristolochia. Chinese Chemical Letters, 2025, 36(12): 111073-. doi: 10.1016/j.cclet.2025.111073

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    8. [8]

      Liwei HouXianyun PengSiliu LyuZhongjian LiBin YangQinghua ZhangQinggang HeLecheng LeiYang Hou . Advancements in MXene-based nanohybrids for electrochemical water splitting. Chinese Chemical Letters, 2025, 36(6): 110392-. doi: 10.1016/j.cclet.2024.110392

    9. [9]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    10. [10]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    11. [11]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    12. [12]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    15. [15]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    16. [16]

      Zhijuan NiuPeizhe SunKwangnak KohChangping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844

    17. [17]

      Xiujuan QiaoZhenying XuZhen WeiYiting HouFengxian GaoXijuan YuXiliang Luo . A wearable electrochemical biosensor based on antifouling and conducting polyaniline hydrogel for cortisol detection in sweat. Chinese Chemical Letters, 2025, 36(11): 110884-. doi: 10.1016/j.cclet.2025.110884

    18. [18]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    19. [19]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    20. [20]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

Metrics
  • PDF Downloads(0)
  • Abstract views(1073)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return