Citation: Fu-Rong Tao, Chen Zhuang, Yue-Zhi Cui, Jing Xu. Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids[J]. Chinese Chemical Letters, ;2014, 25(05): 757-761. doi: 10.1016/j.cclet.2014.01.044 shu

Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids

  • Corresponding author: Fu-Rong Tao, 
  • Received Date: 11 November 2013
    Available Online: 15 January 2014

    Fund Project: We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 21276149) (No. 21276149)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province. (No. ZR2013BQ014)

  • The continuous dehydration of D-glucose into 5-hydroxymethylfurfural (HMF) was carried out under mild conditions, using SO3H-functionalized acidic ionic liquids as catalysts and H2O-4-methyl-2- pentanone (MIBK) biphasic system as solvent. High glucose conversion of 97.4% with HMF yield of 75.1% was obtained at 120 ℃ for 360 min, also, small amounts of levulinic acid (LA) and formic acid were generated. Generally, the dosage of catalyst and the initial content of glucose influenced the reaction significantly; the HMF selectivity decreased with the excessive elevation of temperature and prolonging of time; and water content in the system had a negative effect on the reaction. The ionic liquid catalyst could be recycled and exhibited constant activity for five successful runs. This paper provided a new strategy for HMF production from glucose.
  • 加载中
    1. [1]

      [1] G. Yong, Y.G. Zhang, J.Y. Ying, Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem. Int. Ed. 47 (2008) 9345-9348.

    2. [2]

      [2] F. Benvenuti, C. Carlini, P. Patrono, et al., Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates, Appl. Catal. A: Gen. 193 (2000) 147-153.

    3. [3]

      [3] A.A. Rosatella, S.P. Simeonov, C.A.M. Afonso, et al., Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural, Green Chem. 13 (2011) 754-793.

    4. [4]

      [4] F.M.A. Geilen, J. Klankermayer, W. Leitner, et al., Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system, Angew. Chem. Int. Ed. 49 (2010) 5510-5514.

    5. [5]

      [5] K.I. Shimizu, R. Uozumi, A. Satsuma, Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods, Catal. Commun. 10 (2009) 1849-1853.

    6. [6]

      [6] J.Y.G. Chan, Y.G. Zhang, Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural, Chemsuschem 2 (2009) 731-734.

    7. [7]

      [7] H.P. Yan, Y. Yang, D.M. Tong, et al., Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4-2/ZrO2 and SO4-2/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558-1563.

    8. [8]

      [8] Y.M. Zhang, V. Degirmenci, C. Li, E.J.M. Hensen, Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5- hydroxymethylfurfural, Chemsuschem 4 (2011) 59-64.

    9. [9]

      [9] Z.H. Zhang, Z.K. Zhao, Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride, Bioresour. Technol. 102 (2011) 3970-3972.

    10. [10]

      [10] R.L. Huang, W. Qi, R.X. Su, et al., Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural, Chem. Commun. 46 (2010) 1115- 1117.

    11. [11]

      [11] M. Bicker, J. Hirth, H. Vogel, Dehydration of fructose to 5-hydroxymethylfurfural in sub and supercritical acetone, Green Chem. 5 (2003) 280-284.

    12. [12]

      [12] M. Watanable, Y. Aizawa, T. Iida, et al., Glucose reactions with acid and base catalysts in hot compressed water at 473 K, Carbohydr. Res. 340 (2005) 1925- 1930.

    13. [13]

      [13] Y. Nakamura, S. Morikawa, The dehydration of D-fructose to 5-hydroxymethyl-2- furaldehyde, Bull. Chem. Soc. Jpn. 53 (1980) 3705-3706.

    14. [14]

      [14] K.I. Seri, Y. Inoue, H. Ishida, Highly efficient catalytic activity of lanthanide(Ⅲ) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents, Chem. Lett. 29 (2000) 22-23.

    15. [15]

      [15] K. Seri, Y. Inoue, H. Ishida, Catalytic activity of lanthanide(Ⅲ) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water, Bull. Chem. Soc. Jpn. 74 (2001) 1145-1150.

    16. [16]

      [16] F.S. Asghari, H. Yoshida, Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water, Ind. Eng. Chem. Res. 45 (2006) 2163-2173.

    17. [17]

      [17] R.P. Swatloski, S.K. Spear, Y. Aizawa, R.D. Rogers, A novel cellulose hydrogel prepared from its ionic liquid solution, J. Am. Chem. Soc. 124 (2002) 4974-4975.

    18. [18]

      [18] X. Tong, Y. Ma, Y. Li, An efficient catalytic dehydration of fructose and sucrose to 5- hydroxymethylfurfural with protic ionic liquids, Cabohydr. Res. 345 (2010) 1698- 1701.

    19. [19]

      [19] H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (2007) 1597- 1599.

    20. [20]

      [20] M. Lu, X.H. Guan, X.H. Xu, D.Z. Wei, Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions, Chin. Chem. Lett. 24 (2013) 253-256.

    21. [21]

      [21] Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312 (2006) 1933- 1937.

    22. [22]

      [22] F. Tao, H. Song, L. Chou, Efficient process for the conversion of xylose to furfural with acidic ionic liquid, Can. J. Chem. 89 (2011) 83-87.

    23. [23]

      [23] K. Niknam, M. Damya, 1-Butyl-3-methylimidazolium hydrogen sulfate[bmim]HSO4: an efficient reusable acidic ionic liquid for the synthesis of 1,8- dioxo-octahydroxanthenes, J. Chin. Chem. Soc. 56 (2009) 659-665.

    24. [24]

      [24] A.C. Cole, J.L. Jensen, L. Ntai, et al., Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc. 124 (2002) 5962-5963.

    25. [25]

      [25] Q. Zhao, L. Wang, S. Zhao, et al., High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst, Fuel 90 (2011) 2289- 2293.

    26. [26]

      [26] B.F.M. Kuster, 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture, Starch 42 (1990) 314-321.

    27. [27]

      [27] X.H. Qi, M. Watanabe, R.L. Smith, et al., Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids, Green Chem. 11 (2009) 1327- 1331.

    28. [28]

      [28] S.Q. Hu, Z.F. Zhang, Y.X. Zhou, et al., Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials, Green Chem. 10 (2008) 1280-1283.

    29. [29]

      [29] X.H. Qi, M. Watanabe, T.M. Aida, et al., Efficient conversion of glucose into 5- hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chem. 11 (2009) 1327-1331.

  • 加载中
    1. [1]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    2. [2]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    3. [3]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    4. [4]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    5. [5]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    6. [6]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    11. [11]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    12. [12]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    13. [13]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    14. [14]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    18. [18]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    19. [19]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    20. [20]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

Metrics
  • PDF Downloads(0)
  • Abstract views(755)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return