Citation: Chuan-Zhou Tao, Zhong-Tang Zhang, Jian-Wei Wu, Rong-Hua Li, Zhi-Ling Cao. Synthesis of unnatural N-glycosyl α-amino acids via Petasis reaction[J]. Chinese Chemical Letters, ;2014, 25(4): 532-534. doi: 10.1016/j.cclet.2014.01.035 shu

Synthesis of unnatural N-glycosyl α-amino acids via Petasis reaction

  • Corresponding author: Chuan-Zhou Tao, 
  • Received Date: 17 October 2013
    Available Online: 2 January 2014

    Fund Project: We are grateful to the Natural Science Foundation of Jiangsu Province (No. BK20130404) (No. BK20130404) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. (No. CG1303)

  • A convenient and efficient protocol for the synthesis of unnatural N-glycosyl α-amino acids was developed. Condensation of 1,3,4,6-tetra-O-actyl-β-D-glucosamine hydrochloride, alkenyl boronic acid, and glyoxylic acid was achieved in CH2Cl2 to give the derivatives of 2-(N-glycosyl)aminobut-3-enoic acid which may find applications in glycobiology research and medicinal chemistry.
  • 加载中
    1. [1]

      [1] S.A.W. Gruner, E. Locardi, E. Lohof, H. Kessler, Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds, Chem. Rev. 102 (2002) 491-514.

    2. [2]

      [2] P.M. St. Hilaire, T.L. Lowary, M. Meldal, K. Bock, Oligosaccharide mimetics obtained by novel, rapid screening of carboxylic acid encoded glycopeptide libraries, J. Am. Chem. Soc. 120 (1998) 13312-13320.

    3. [3]

      [3] L. Jobron, G. Hummel, Solid-phase synthesis of unprotected N-glycopeptide building blocks for SPOT synthesis of N-linked glycopeptides, Angew. Chem. Int. Ed. 39 (2000) 1621-1624.

    4. [4]

      [4] L. Liu, C.S. Bennett, C.H. Wong, Advances in glycoprotein synthesis, Chem. Commun. (2006) 21-33.

    5. [5]

      [5] D.P. Gamblin, E.M. Scanlan, B.G. Davis, Glycoprotein synthesis: an update, Chem. Rev. 109 (2009) 131-163.

    6. [6]

      [6] G.M. Fang, Y.M. Li, F. Shen, et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew. Chem. Int. Ed. 50 (2011) 7645-7649.

    7. [7]

      [7] Y. Hajihara, M. Izumi, K. Hirano, et al., Elucidating the function of complex-type oligosaccharides by use of chemical synthesis of homogeneous glycoproteins, Isr. J. Chem. 51 (2011) 917-929.

    8. [8]

      [8] J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133 (2011) 11080-11083.

    9. [9]

      [9] V.L. Campo, I. Carvalho, S. Allman, B.G. Davis, R.A. Field, Chemical and chemoenzymatic synthesis of glycosyl-amino acids and glycopeptides related to Trypanosoma cruzi mucins, Org. Biomol. Chem. 5 (2007) 2645-2657.

    10. [10]

      [10] A. Nuzzi, A. Massi, A. Dondoni, General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic a-amination of C-glycosylalkyl aldehydes, Org. Lett. 10 (2008) 4485-4488.

    11. [11]

      [11] S.B. Cohen, R.L. Halcomb, Application of serine- and threonine-derived cyclic sulfamidates for the preparation of S-linked glycosyl amino acids in solution- and solid-phase peptide synthesis, J. Am. Chem. Soc. 124 (2002) 2534-2543.

    12. [12]

      [12] A.L. Handlon, B. Fraser-Reid, A convergent strategy for the critical .beta.-linked chitobiosyl-N-glycopeptide core, J. Am. Chem. Soc. 115 (1993) 3796-3797.

    13. [13]

      [13] G. Geisberger, E.B. Gyenge, D. Hinger, et al., Chitosan-thioglycolic acid as a versatile antimicrobial agent, Biomacromolecules 14 (2013) 1010-1017.

    14. [14]

      [14] S.M. Srinivas, N.V. Harohally, Improved synthesis of lysine- and argininederived amadori and Heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity, J. Agric. Food Chem. 60 (2012) 1522-1527.

    15. [15]

      [15] V.V. Mossine, C.L. Barnes, G.V. Glinsky, M.S. Feather, Molecular and crystal structure of N-(2-deoxy-D-aldohexos-2-yl)-glycines (Heyns compounds), Carbohydr. Res. 284 (1996) 11-24.

    16. [16]

      [16] K. Stefan, B. Wolfgang, Metal complexes of biologically important ligands. CXXXI. Pentamethylcyclopentadienyl halfsandwich complexes of rhodium and iridium with glycosyl-alpha-iminocarboxylates as chelate ligands, Z. Naturforsch. B 56 (2001) 62-68.

    17. [17]

      [17] C.Z. Tao, F. Liu, W.W. Liu, et al., Synthesis of N-aryl-D-glucosamines through copper-catalyzed C-N coupling, Tetrahedron Lett. 53 (2012) 7093-7096.

    18. [18]

      [18] C.Z. Tao, F. Liu, B. Xu, et al., Copper-catalyzed synthesis of N-aryl-D-glucosamines from arylboronic acids, J. Carbohydr. Chem. 32 (2013) 411-423.

    19. [19]

      [19] Z.Y. Hong, L. Liu, C.C. Hsu, C.H. Wong, Three-step synthesis of sialic acids and derivatives, Angew. Chem. Int. Ed. 45 (2006) 7417-7421.

    20. [20]

      [20] Z.Y. Hong, L. Liu, M. Sugiyama, Y. Fu, C.H. Wong, Concise synthesis of iminocyclitols via Petasis-type aminocyclization, J. Am. Chem. Soc. 131 (2009) 8352-8353.

    21. [21]

      [21] H.J. Xu, Y.Q. Zhao, T. Feng, Y.S. Feng, Chan-Lam-type S-arylation of thiols with boronic acids at room temperature, J. Org. Chem. 77 (2012) 2878-2884.

    22. [22]

      [22] J.J. Dai, J.H. Liu, D.F. Luo, L. Liu, Pd-catalysed decarboxylative Suzuki reactions and orthogonal Cu-based O-arylation of aromatic carboxylic acids, Chem. Commun. 47 (2011) 677-679.

    23. [23]

      [23] C.T. Yang, Z.Q. Zhang, Y.C. Liu, L. Liu, Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides, Angew. Chem. Int. Ed. 50 (2011) 3904-3907.

    24. [24]

      [24] P.G.M. Wuts, T.W. Greene (Eds.), Greene's Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons, New York, 2007.

  • 加载中
    1. [1]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    2. [2]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    3. [3]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    4. [4]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    5. [5]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    6. [6]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    7. [7]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    8. [8]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    9. [9]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    10. [10]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    11. [11]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    12. [12]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    19. [19]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    20. [20]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return