Citation: Mahdi Parvar, Jalil Mehrzad, Mohammad Javad Chaichi, Saman Hosseinkhani, Hamid Golchoubian. Quenching effect of deferoxamine on free radical-mediated photon production in luminol and ortho-phenanthroline-dependent chemiluminescence[J]. Chinese Chemical Letters, ;2014, 25(4): 630-634. doi: 10.1016/j.cclet.2014.01.022 shu

Quenching effect of deferoxamine on free radical-mediated photon production in luminol and ortho-phenanthroline-dependent chemiluminescence

  • Corresponding author: Jalil Mehrzad, 
  • Received Date: 19 July 2013
    Available Online: 24 December 2013

    Fund Project: The authors gratefully acknowledge the bureau (area) for research and technology of Ferdowsi University of Mashhad and Mazandaran University, Babolsar, Iran. (area)

  • Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate photoredox properties of DFO, its quenching effect on superoxide radical (O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH·) was examined using luminol and ortho-phenanthroline (o-phen) chemiluminescence (CL) systems and UV-vis spectrophotometry. Stern-Volmer equation was also used for the CL kinetics. The observed quenching effect of DFO on CL/photon production in luminol and o-phen CL systems strongly confirmed the static arm of quenching properties of DFO on OH· and H2O2, but much less pronounced on O2; the quenching property wasmaximal when iron was involved in the reaction systems. The Stern-Volmer plots in the designed photochemical reaction systems also confirmed a potent quenching effect of DFO on FR-mediated CL. Our study highlights strong photoreducing and antioxidant properties of DFO with huge quenching capacity on excessive FRs, and thus implies its promising prospects for therapeutic applications.
  • 加载中
    1. [1]

      [1] J. Mehrzad, H. Dosogne, E. Meyer, R. Heyneman, C. Burvenich, Respiratory burst activity of blood and milk neutrophils in dairy cows during different stages of lactation, J. Dairy Res. 68 (2001) 399-415.

    2. [2]

      [2] J. Mehrzad, L. Duchateau, C. Burvenich, High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis, Vet. Res. 36 (2005) 101-116.

    3. [3]

      [3] S. Dikalov, K.K. Griendling, D.G. Harrison, Measurement of reactive oxygen species in cardiovascular studies, Hypertension 49 (2007) 717-727.

    4. [4]

      [4] K. Takeshige, S. Minakami, NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation, Biochem. J. 180 (1979) 129-135.

    5. [5]

      [5] B. Halliwell, J.M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186 (1990) 1-85.

    6. [6]

      [6] C.W. Trenam, D.R. Blake, C.J. Morris, Skin inflammation: reactive oxygen species and the role of iron, J. Invest. Dermatol. 99 (1992) 675-682.

    7. [7]

      [7] G. Poli, U. Leonarduzzi, F. Biasi, E. Chiarpotto, Oxidative stress and cell signaling, Curr. Med. Chem. 11 (2004) 1163-1182.

    8. [8]

      [8] J.E. Schneider, M.M. Browning, X. Zhu, K.L. Eneff, R.A. Floyd, Characterization of hydroxyl free radical mediated damage to plasmid pBR322 DNA, Mutat. Res. 214 (1989) 23-31.

    9. [9]

      [9] E.R. Stadtman, B.S. Berlett, Reactive-oxygen mediated protein oxidation in aging and disease, Chem. Res. Toxicol. 10 (1997) 485-494.

    10. [10]

      [10] H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. 65 (1894) 899-910.

    11. [11]

      [11] E. Neyens, J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33-50.

    12. [12]

      [12] S.B. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigments 76 (2008) 714-720.

    13. [13]

      [13] F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. A 147 (1934) 332-351.

    14. [14]

      [14] B. Halliwell, Free-radicals, antioxidants, and human disease: curiosity, cause, or consequences, Lancet 344 (1994) 721-724.

    15. [15]

      [15] M. Auer, L.A. Pfister, D. Leppert, M.G. Taüber, S.L. Leib, Effects of clinically used antioxidants in experimental pneumococcal meningitis, J. Infect. Dis. 182 (2000) 347-350.

    16. [16]

      [16] I. Paterniti, E. Mazzon, E. Emanuela, et al., Modulation of inflammatory response after spinal cord trauma with deferoxamine, an iron chelator, Free Radic. Res. 44 (2010) 694-699.

    17. [17]

      [17] E.M. Hoke, C.A. Maylock, E. Shacter, Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin, Free Radic. Biol. Med. 39 (2005) 403-411.

    18. [18]

      [18] E. Banin, A. Lozinski, K.M. Brady, et al., The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16761-16766.

    19. [19]

      [19] C.L. Tielemans, C.M. Lenclud, R. Wens, F.E. Collart, M. Dratwa, Critical role of iron overload in the increased susceptibility of haemodialysis patients to bacterial infections. Beneficial effects of desferrioxamine, Nephrol. Dial. Transplant. 4 (1989) 883-887.

    20. [20]

      [20] O. Cozar, N. Leopold, C. Jelic, et al., IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe(ⅡI) complex, ferrioxamine B, J. Mol. Struct. 788 (2006) 1-6.

    21. [21]

      [21] S. Singh, R.C. Hider, J.B. Porter, Separation and identification of desferrioxamine and its iron chelating metabolites by high performance liquid chromatography and fast atom bombardment mass spectrometry: choice of complexing agent and application to biological fluids, Anal. Biochem. 187 (1990) 212-219.

    22. [22]

      [22] E. Farkas, H. Csóka, G. Micera, A. Dessi, Copper(Ⅱ), nickel(Ⅱ), zinc(Ⅱ), and molybdenum( VI) complexes of desferrioxamine B in aqueous solution, J. Inorg. Biochem. 65 (1997) 281-286.

    23. [23]

      [23] I. Parejo, C. Petrakis, P. Kefalas, A transition metal enhanced luminol chemiluminescence in the presence of a chelator, J. Pharmacol. Toxicol. 43 (2000) 183-190.

    24. [24]

      [24] M. Shamsipur, M.J. Chaichi, A study of quenching effect of sulfur-containing amino acids L-cysteine and L-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61 (2005) 1227-1231.

    25. [25]

      [25] Y.J. Hua, I. Narumi, G.J. Gao, et al., PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans, Biochem. Biophys. Res. Commun. 306 (2003) 354-360.

    26. [26]

      [26] B. Tian, Y. Wu, D. Sheng, et al., Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans, Luminescence 19 (2004) 78-84.

    27. [27]

      [27] Y. Zhao, W. Yu, D. Wang, X. Liang, T. Hu, Chemiluminescence determination of free radical scavenging abilities of ‘tea pigments' and comparison with ‘tea polyphenols', Food Chem. 80 (2003) 115-118.

    28. [28]

      [28] C. Xiao, D.A. Palmer, D.J. Wesolowski, S.B. Lovitz, W. King, Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence, Anal. Chem. 74 (2002) 2210-2216.

    29. [29]

      [29] L. Magnania, E.M. Gaydoua, J.C. Hubaud, Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion, Anal. Chim. Acta 411 (2000) 209-216.

    30. [30]

      [30] T. Sun, Z.D. Xu, Radical scavenging activities of a-alanine C60 adduct, Bioorg. Med. Chem. Lett. 16 (2006) 3731-3734.

  • 加载中
    1. [1]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    4. [4]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    5. [5]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    6. [6]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    7. [7]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    8. [8]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    9. [9]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    10. [10]

      Zekun GaoXiuli ZhengWeimin LiuJie ShaShuaishuai BianHaohui RenJiasheng WuWenjun ZhangChun-Sing LeePengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874

    11. [11]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    12. [12]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    13. [13]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    14. [14]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    15. [15]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    16. [16]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    17. [17]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    18. [18]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return