Citation:
Mahdi Parvar, Jalil Mehrzad, Mohammad Javad Chaichi, Saman Hosseinkhani, Hamid Golchoubian. Quenching effect of deferoxamine on free radical-mediated photon production in luminol and ortho-phenanthroline-dependent chemiluminescence[J]. Chinese Chemical Letters,
;2014, 25(4): 630-634.
doi:
10.1016/j.cclet.2014.01.022
-
Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate photoredox properties of DFO, its quenching effect on superoxide radical (O2-·), hydrogen peroxide (H2O2) and hydroxyl radical (OH·) was examined using luminol and ortho-phenanthroline (o-phen) chemiluminescence (CL) systems and UV-vis spectrophotometry. Stern-Volmer equation was also used for the CL kinetics. The observed quenching effect of DFO on CL/photon production in luminol and o-phen CL systems strongly confirmed the static arm of quenching properties of DFO on OH· and H2O2, but much less pronounced on O2-·; the quenching property wasmaximal when iron was involved in the reaction systems. The Stern-Volmer plots in the designed photochemical reaction systems also confirmed a potent quenching effect of DFO on FR-mediated CL. Our study highlights strong photoreducing and antioxidant properties of DFO with huge quenching capacity on excessive FRs, and thus implies its promising prospects for therapeutic applications.
-
-
-
[1]
[1] J. Mehrzad, H. Dosogne, E. Meyer, R. Heyneman, C. Burvenich, Respiratory burst activity of blood and milk neutrophils in dairy cows during different stages of lactation, J. Dairy Res. 68 (2001) 399-415.
-
[2]
[2] J. Mehrzad, L. Duchateau, C. Burvenich, High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis, Vet. Res. 36 (2005) 101-116.
-
[3]
[3] S. Dikalov, K.K. Griendling, D.G. Harrison, Measurement of reactive oxygen species in cardiovascular studies, Hypertension 49 (2007) 717-727.
-
[4]
[4] K. Takeshige, S. Minakami, NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation, Biochem. J. 180 (1979) 129-135.
-
[5]
[5] B. Halliwell, J.M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186 (1990) 1-85.
-
[6]
[6] C.W. Trenam, D.R. Blake, C.J. Morris, Skin inflammation: reactive oxygen species and the role of iron, J. Invest. Dermatol. 99 (1992) 675-682.
-
[7]
[7] G. Poli, U. Leonarduzzi, F. Biasi, E. Chiarpotto, Oxidative stress and cell signaling, Curr. Med. Chem. 11 (2004) 1163-1182.
-
[8]
[8] J.E. Schneider, M.M. Browning, X. Zhu, K.L. Eneff, R.A. Floyd, Characterization of hydroxyl free radical mediated damage to plasmid pBR322 DNA, Mutat. Res. 214 (1989) 23-31.
-
[9]
[9] E.R. Stadtman, B.S. Berlett, Reactive-oxygen mediated protein oxidation in aging and disease, Chem. Res. Toxicol. 10 (1997) 485-494.
-
[10]
[10] H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. 65 (1894) 899-910.
-
[11]
[11] E. Neyens, J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33-50.
-
[12]
[12] S.B. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigments 76 (2008) 714-720.
-
[13]
[13] F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. A 147 (1934) 332-351.
-
[14]
[14] B. Halliwell, Free-radicals, antioxidants, and human disease: curiosity, cause, or consequences, Lancet 344 (1994) 721-724.
-
[15]
[15] M. Auer, L.A. Pfister, D. Leppert, M.G. Taüber, S.L. Leib, Effects of clinically used antioxidants in experimental pneumococcal meningitis, J. Infect. Dis. 182 (2000) 347-350.
-
[16]
[16] I. Paterniti, E. Mazzon, E. Emanuela, et al., Modulation of inflammatory response after spinal cord trauma with deferoxamine, an iron chelator, Free Radic. Res. 44 (2010) 694-699.
-
[17]
[17] E.M. Hoke, C.A. Maylock, E. Shacter, Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin, Free Radic. Biol. Med. 39 (2005) 403-411.
-
[18]
[18] E. Banin, A. Lozinski, K.M. Brady, et al., The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16761-16766.
-
[19]
[19] C.L. Tielemans, C.M. Lenclud, R. Wens, F.E. Collart, M. Dratwa, Critical role of iron overload in the increased susceptibility of haemodialysis patients to bacterial infections. Beneficial effects of desferrioxamine, Nephrol. Dial. Transplant. 4 (1989) 883-887.
-
[20]
[20] O. Cozar, N. Leopold, C. Jelic, et al., IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe(ⅡI) complex, ferrioxamine B, J. Mol. Struct. 788 (2006) 1-6.
-
[21]
[21] S. Singh, R.C. Hider, J.B. Porter, Separation and identification of desferrioxamine and its iron chelating metabolites by high performance liquid chromatography and fast atom bombardment mass spectrometry: choice of complexing agent and application to biological fluids, Anal. Biochem. 187 (1990) 212-219.
-
[22]
[22] E. Farkas, H. Csóka, G. Micera, A. Dessi, Copper(Ⅱ), nickel(Ⅱ), zinc(Ⅱ), and molybdenum( VI) complexes of desferrioxamine B in aqueous solution, J. Inorg. Biochem. 65 (1997) 281-286.
-
[23]
[23] I. Parejo, C. Petrakis, P. Kefalas, A transition metal enhanced luminol chemiluminescence in the presence of a chelator, J. Pharmacol. Toxicol. 43 (2000) 183-190.
-
[24]
[24] M. Shamsipur, M.J. Chaichi, A study of quenching effect of sulfur-containing amino acids L-cysteine and L-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61 (2005) 1227-1231.
-
[25]
[25] Y.J. Hua, I. Narumi, G.J. Gao, et al., PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans, Biochem. Biophys. Res. Commun. 306 (2003) 354-360.
-
[26]
[26] B. Tian, Y. Wu, D. Sheng, et al., Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans, Luminescence 19 (2004) 78-84.
-
[27]
[27] Y. Zhao, W. Yu, D. Wang, X. Liang, T. Hu, Chemiluminescence determination of free radical scavenging abilities of ‘tea pigments' and comparison with ‘tea polyphenols', Food Chem. 80 (2003) 115-118.
-
[28]
[28] C. Xiao, D.A. Palmer, D.J. Wesolowski, S.B. Lovitz, W. King, Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence, Anal. Chem. 74 (2002) 2210-2216.
-
[29]
[29] L. Magnania, E.M. Gaydoua, J.C. Hubaud, Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion, Anal. Chim. Acta 411 (2000) 209-216.
-
[30]
[30] T. Sun, Z.D. Xu, Radical scavenging activities of a-alanine C60 adduct, Bioorg. Med. Chem. Lett. 16 (2006) 3731-3734.
-
[1]
-
-
-
[1]
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
-
[2]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[3]
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
-
[4]
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
-
[5]
Haijun Shen , Yi Qiao , Chun Zhang , Yane Ma , Jialing Chen , Yingying Cao , Wenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283
-
[6]
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
-
[7]
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
-
[8]
Jindan Zhang , Zhenghong Li , Chi Li , Mengqi Zhu , Shicheng Tang , Kaicong Cai , Zhibin Cheng , Chulong Liu , Shengchang Xiang , Zhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046
-
[9]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[10]
Zekun Gao , Xiuli Zheng , Weimin Liu , Jie Sha , Shuaishuai Bian , Haohui Ren , Jiasheng Wu , Wenjun Zhang , Chun-Sing Lee , Pengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874
-
[11]
Jiawei Li , Cheng Chen , Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513
-
[12]
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
-
[13]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[14]
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
-
[15]
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
-
[16]
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
-
[17]
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
-
[18]
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
-
[19]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[20]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(605)
- HTML views(15)