Citation:
Lotfali Saghatforoush, Mohammad Hasanzadeh, Nasrin Shadjou. Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine[J]. Chinese Chemical Letters,
;2014, 25(4): 655-658.
doi:
10.1016/j.cclet.2014.01.014
-
A simple and rapid protocol for the synthesis of polystyrene-graphene oxide nanocomposite (PS/GONC) was achieved for first time using an in situ polymerization method. PS/GONC modified glassy carbon electrode (PS/GONC/GCE) has been employed as an efficient nanosensor for the electrooxidation of histamine. The PS/GONC/GCE is used as an electrochemical nanosensors for monitoring histamine using differential pulse voltammetry techniques (detection limit 0.03 μmol/L). In addition, the prepared nanosensor was successfully applied to determine histamine in fish samples, yielding satisfactory results. The spiked recoveries were in the range of 98.2%-103.1%.
-
Keywords:
- Polystyrene,
- Graphene oxide,
- Polymeric sensor,
- Biogenic amine,
- Nanotechnology
-
-
-
[1]
[1] F. Schedin, A.K. Geim, S.V. Morozov, et al., Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652.655.
-
[2]
[2] F. Yavari, N. Koratkar, Graphene-based chemical sensors, J. Phys. Chem. Lett. 3 (2012) 1746.1753.
-
[3]
[3] E. Massera, V. La Ferrara, M. Miglietta, et al., Gas sensors based on graphene: comparison of two different fabrication approaches, Chim. Oggi. 29 (2011) 39.41.
-
[4]
[4] A. Reina, X.T. Jia, J. Ho, et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2009) 30.35.
-
[5]
[5] M.Y. Zhu, J.J. Wang, B.C. Holloway, et al., A mechanism for carbon nanosheet formation, Carbon 45 (2007) 2229.2234.
-
[6]
[6] D. Li, M.B. Mu丯 ller, S. Gilje, R.B. Kaner, G.G. Wallance, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101.105.
-
[7]
[7] S. Park, R.S. Ruoff, Chemical methods for the production of graphemes, Nat. Nanotechnol. 4 (2009) 217.224.
-
[8]
[8] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale grapheme, Nat. Nanotechnol. 4 (2009) 25.29.
-
[9]
[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666.669.
-
[10]
[10] http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010. pdf.
-
[11]
[11] P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol. 2 (2007) 605.615.
-
[12]
[12] A.A. Balandin, S. Ghosh, W.Z. Bao, et al., Superior thermal conductivity of singlelayer graphene, Nano Lett. 8 (2008) 902.907.
-
[13]
[13] T.J. Booth, P. Blake, R.R. Nair, et al., Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett. 8 (2008) 2442.2446.
-
[14]
[14] (a) C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385.388; (b) X.L. Wu, P. Liu, Facile preparation and characterization of graphene nanosheets/polystyrene composites, Macromol. Res. 18 (2010) 1008.1012; (c) B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review, J. Mater. Sci. 43 (2008) 5092.5101; (d) S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al., Graphene-based composite materials, Nature 442 (2006) 282.286; (e) T. Ramanathan, A.A. Abdala, S. Stankovich, et al., Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327.331.
-
[15]
[15] (a) R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Prog. Polym. Sci. 36 (2011) 638.670; (b) H.A. Becerril, J. Mao, Z.F. Liu, et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463.470; (c) K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706.710; (d) X.L. Li, G.Y. Zhang, X.D. Bai, et al., Highly conducting graphene sheets and Langmuir.Blodgett films, Nat. Nanotechnol. 3 (2008) 538.542.
-
[16]
[16] X. Wang, L.J. Zhi, N. Tsao, et al., Transparent carbon films as electrodes in organic solar cells, Angew. Chem. Int. Ed. 47 (2008) 2990.2992.
-
[17]
[17] J.T. Robinson, F.K. Perkins, E.S. Snow, Z.Q. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8 (2008) 3137.3140.
-
[18]
[18] (a) M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498.3502; (b) A. Das, S. Pisana, B. Chakraborty, et al., Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol. 3 (2008) 210.215.
-
[19]
[19] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270.274.
-
[20]
[20] (a) E. Yoo, J. Kim, E.Hosono, et al., Large reversible Li storage of graphene nanosheet families foruseinrechargeablelithiumionbatteries,NanoLett.8(2008)2277.2282; (b) P.K. Ang,W. Chen, A.T.S. Wee, K.P. Loh, Solution-gated epitaxial graphene as pH sensor, J. Am. Chem. Soc. 130 (2008) 14392.14393; (c) J. Dayen, A.Mahmood, D.S. Golubev, et al., Side-gated transport in focused-ionbeam- fabricated multilayered graphene nanoribbons, Small 4 (2008) 716.720; (d) Y.C. Si, E.T. Samulski, Exfoliated graphene separated by platinumnanoparticles, Chem. Mater. 20 (2008) 6792.6797.
-
[21]
[21] Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (2008) 5856.5857.
-
[22]
[22] R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C 112 (2008) 5263.5266.
-
[23]
[23] J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites.a review, Mater. Sci. Eng. A 393 (2005) 1.11.
-
[24]
[24] N.A. Kotov,Materials science: carbon sheet solutions, Nature 442 (2006) 254.255.
-
[25]
[25] G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett. 9 (2009) 814.818.
-
[26]
[26] A.S. Patole, S.P. Patole, H. Kang, et al., A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization, J. Colloid Interface Sci. 350 (2010) 530.537.
-
[27]
[27] R.F. Ding, Y. Hua, Z. Gui, et al., Preparation and characterization of polystyrene/ graphite oxide nanocomposite by emulsion polymerization, Polym. Degrad. Stab. 81 (2003) 473.476.
-
[28]
[28] H.T. Hu, X.B. Wang, J.C. Wang, et al., Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization, Chem. Phys. Lett. 484 (2010) 247.253.
-
[29]
[29] S. Pé>rez, J. Bartrol., E. Fàbregas, Amperometric biosensor for the determination of histamine in fish samples, Food Chem. 141 (2013) 4066.4072.
-
[30]
[30] D. Telsnig, K. Kalcher, A. Leitner, A. Ortner, Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes, Electroanalysis 25 (2013) 47.50.
-
[31]
[31] J. S.varc-Gajic, Z. Stojanovic, Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode, Electroanalysis 22 (2010) 2931.2939.
-
[32]
[32] C.M. Keow, F. Abu Bakar, A.B. Salleh, et al., Screen-printed histamine biosensors fabricated from the entrapment of diamine oxidase in a photocured poly (HEMA) film, Int. J. Electrochem. Sci. 7 (2012) 4702.4715.
-
[33]
[33] M. Di Fusco, R. Federico, A. Boffi, et al., Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer, Anal. Bioanal. Chem. 401 (2011) 707.716.
-
[34]
[34] R. Draisci, P.G. Volpe, O.L. Lucentini, et al., Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies, Food Chem. 62 (1998) 225.232.
-
[35]
[35] H.K. Mah, J.H. Han, Y.J. Oh, M.G. Kim, H.J. Hwang, Biogenic amines in Jeotkals, Korean salted and fermented fish products, Food Chem. 79 (2002) 239.243.
-
[36]
[36] M. Hasanzadeh, N. Shadjou, (Fe3O4)-Graphene oxide-SO3H as a new magnetic nanocatalyst for electro-oxidation and determination of selected parabens, J. Nanosci. Nanotechnol. 13 (2013) 4909.4916.
-
[37]
[37] E. Omidinia, N. Shadjou, M. Hasanzadeh, (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine, Mater. Sci. Eng. C 33 (2013) 4624.4632.
-
[1]
-
-
-
[1]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[2]
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
-
[3]
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
-
[4]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[5]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[6]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[7]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[8]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[9]
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
-
[10]
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
-
[11]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[12]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[13]
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
-
[14]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[15]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[16]
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
-
[17]
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
-
[18]
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
-
[19]
Xue Zheng , Jizhen Xie , Xing Zhang , Weiting Sun , Heyang Zhao , Yantuan Li , Cheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545
-
[20]
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(692)
- HTML views(14)