Citation: Ming-Xian Liu, Li-Hua Gan, Yang Li, Da-Zhang Zhu, Zi-Jie Xu, Long-Wu Chen. Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilica-embedded emulsion-templated polymerization[J]. Chinese Chemical Letters, ;2014, 25(6): 897-901. doi: 10.1016/j.cclet.2014.01.010 shu

Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilica-embedded emulsion-templated polymerization

  • Corresponding author: Li-Hua Gan, 
  • Received Date: 14 January 2013
    Available Online: 24 December 2013

    Fund Project:

  • A novel synthesis of hierarchical porous carbons (HPCs) with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization was reported. An oil-in-water emulsion containing SiO2 colloids was fabricated using liquid paraffin as an oil phase, resorcinol/formaldehyde and silica sol as an aqueous phase, and Span 80/Tween 80 as emulsifiers. HPCs with macropore cores, open meso/macropore windows, and abundant micropores were synthesized by the polymerization and carbonization of the emulsion, followed by scaffold removal and further KOH activation. A typical HPCs sample as supercapacitor electrode shows the charge/discharge capability under large loading current density (30 A/g) coupling with a reasonable electrochemical capacitance in KOH electrolyte solution.
  • 加载中
    1. [1]

      [1] (a) H. Jiang, P.S. Lee, C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy Environ. Sci. 6 (2013) 41-53;(b) H. Jiang, J. Ma, C.Z. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes, Adv. Mater. 24 (2012) 4197-4202;(c) Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater. 18 (2006) 2619-2623;(d) J.S. Qian, M.X. Liu, L.H. Gan, et al., A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun. 49 (2013) 3043-3045;(e) M.X. Liu, L.H. Gan, W. Xiong, et al., Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors, Energy Fuels 27 (2013) 1168-1173;(f) L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.

    2. [2]

      [2] D.Y. Qu, Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources 109 (2002) 403-411.

    3. [3]

      [3] (a) M.X. Liu, L.H. Gan, W. Xiong, et al., Partially graphitic micro-and mesoporous carbon microspheres for supercapacitors, Chin. Chem. Lett. 24 (2013) 1027-1040;(b) G. Hasegawa, M. Aoki, K. Kanamori, et al., Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area, J. Mater. Chem. 21 (2011) 2060-2063;(c) Y.K. Lü, L.H. Gan, M.X. Liu, et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209 (2012) 152-157.

    4. [4]

      [4] D.Y. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74 (1998) 99-107.

    5. [5]

      [5] (a) D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. 47 (2008) 373-376;(b) Z.Y. Wang, E.R. Kiesel, A. Stein, Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity, J. Mater. Chem. 18 (2008) 2194-2200;(c) W. Xing, C.C. Huang, S.P. Zhuo, et al., Hierarchical porous carbons with high performance for supercapacitor electrodes, Carbon 47 (2009) 1715-1722;(d) Q. Li, R.R. Jiang, Y.Q. Dou, et al., Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor, Carbon 49 (2011) 1248-1257.

    6. [6]

      [6] (a) J. Yi, X.P. Li, S.J. Hua, et al., Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery, J. Power Sources 196 (2011) 6670-6675;(b) S.W. Woo, K. Dokko, H. Nakano, K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric doublelayer capacitors, J. Mater. Chem. 18 (2008) 1674-1680;(c) Y.H. Deng, C. Liu, T. Yu, et al., Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach, Chem. Mater. 19 (2007) 3271-3277;(d) H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores, J. Phys. Chem. C 111 (2007) 227-233;(e) M.X. Liu, L.H. Gan, C. Tian, et al., Dual template approach for the synthesis of hierarchically mesocellular carbon foams, Chin. Chem. Lett. 20 (2009) 123-126.

    7. [7]

      [7] (a) L.F. Chen, Y.Z. Shang, H.L. Liu, Y. Hu, Effect of the spacer group of cationic Gemini surfactant on microemulsion phase behavior, J. Colloid Interface Sci. 301 (2006) 644-650;(b) A. Menner, R. Powell, A. Bismarck, Open porous polymer foams via inverse emulsion polymerization: should the definition of high internal phase (ratio) emulsions be extended? Macromolecules 39 (2006) 2034-2035.

    8. [8]

      [8] P.V. Smallwood, The formation of grains of suspension poly(vinyl chloride), Polymer 27 (1986) 1609-1618.

    9. [9]

      [9] (a) V.O. Ikem, A. Menner, A. Bismarck, High-porosity macroporous polymers sythesized from titania-particle-stabilized medium and high internal phase emulsions, Langmuir 26 (2010) 8836-8841;(b) M.X. Liu, L.H. Gan, F.Q. Zhao, et al., Carbon foams prepared by an oil-in-water emulsion method, Carbon 45 (2007) 2710-2712;(c) M.X. Liu, L.H. Gan, Z.J. Xu, et al., Unusual phase inversion behavior in an emulsion polymerization system caused by ammonia, Chem. Lett. 39 (2010) 274-275.

    10. [10]

      [10] B.P. Binks, S.O. Lumsdon, Stability of oil-in-water emulsions stabilised by silica particles, Phys. Chem. Chem. Phys. 1 (1999) 3007-3016.

    11. [11]

      [11] S.J. Han, T. Hyeon, Simple silica-particle template synthesis of mesoporous carbons, Chem. Commun. (19) (1999) 1955-1956.

    12. [12]

      [12] M.A. Springuel-Huet, J.L. Bonardet, A. Gédéon, et al., Mechanical properties of mesoporous silicas and alumina-silicas MCM-41 and SBA-15 studied by N2 adsorption and 129Xe NMR, Microporous Mesoporous Mater. 44-45 (2001) 775-784.

    13. [13]

      [13] F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors, J. Power Sources 138 (2004) 351-359.

    14. [14]

      [14] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

    15. [15]

      [15] W. Xiong, M.X. Liu, L. Gan, et al., A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes, J. Power Sources 196 (2011) 10461-10464.

    16. [16]

      [16] L.M. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8 (2012) 1130-1366.

    17. [17]

      [17] (a) D.W. Wang, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng, Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater. 20 (2008) 7195-7200;(b) H.S. Zhou, S.M. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of selfordered mesoporous carbon, J. Power Sources 122 (2003) 219-223;(c) N. Brun, S.R.S. Prabaharan, M. Morcrette, et al., Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors, Adv. Funct. Mater. 19 (2009) 3136-3145.

  • 加载中
    1. [1]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    2. [2]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    3. [3]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    4. [4]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    5. [5]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    6. [6]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    10. [10]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    11. [11]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    12. [12]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    13. [13]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    14. [14]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    15. [15]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    16. [16]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    17. [17]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    18. [18]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

Metrics
  • PDF Downloads(0)
  • Abstract views(675)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return