Citation: Zi-Lan Feng, Yuan-Yuan Yao, Jing-Kun Xu, Long Zhang, Zi-Fei Wang, Yang-Ping Wen. One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid[J]. Chinese Chemical Letters, ;2014, 25(4): 511-516. doi: 10.1016/j.cclet.2014.01.004 shu

One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid

  • Corresponding author: Jing-Kun Xu,  Yang-Ping Wen, 
  • Received Date: 24 October 2013
    Available Online: 17 December 2013

    Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 51263010, 51272096) (Nos. 51263010, 51272096) Jiangxi Provincial Department of Education (No. GJJ11590) (No. GJJ11590)

  • A novel graphene oxide (GO) doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOTM) film has been achieved via one-step co-electrodeposition and utilized for electrochemical studies of indole-3-acetic acid (IAA). The incorporation of GO into PEDOTM film facilitated the electrocatalytic activity and exhibited a favorable interaction between the PEDOTM/GO film and the phytohormone during the oxidation of IAA. Under optimized conditions, differential pulse voltammetry and square wave voltammetry were used for the quantitative analysis of IAA, respectively, each exhibiting a wide linearity range from 0.6 μmol L-1 to 10 μmol L-1 and 0.05 μmol L-1 to 40 μmol L-1, good sensitivity with a low detection limit of 0.087 μmol L-1 and 0.033 μmol L-1, respectively, as well as good stability. With the notable advantages of a green, sensitive method, expeditious response and facile operation, the as-prepared PEDOTM/GO organic-inorganic composite film provides a promising platform for electrochemical studies of IAA.
  • 加载中
    1. [1]

      [1] L.B. Groenendaal, G. Zotti, P.H. Aubert, et al., Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Adv. Mater. 15 (2003) 855-879.

    2. [2]

      [2] S. Kirchmeyer, A. Elschner, K. Reuter, et al., PEDOT as a Conductive Polymer: Principles and Applications, CRC Press, New York, 2010.

    3. [3]

      [3] Y.P. Wen, L.M. Lu, D. Li, et al., Ascorbate oxidase electrochemical biosensor based on the biocompatible poly(3,4-ethylenedioxythiophene) matrices for agricultural application in crops, Chin. Chem. Lett. 23 (2012) 221-224.

    4. [4]

      [4] Y.P. Wen, D. Li, Y. Lu, et al., Poly(3,4-ethylenedioxythiophene methanol)/ascorbate oxidase/nafion-single-walled carbon nanotubes biosensor for voltammetric detection of vitamin C, Chin. J. Polym. Sci. 30 (2012) 460-469.

    5. [5]

      [5] Y. Lu, Y.P. Wen, B.Y. Lu, et al., Electrosynthesis and characterization of poly(hydroxymethylated- 3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application, Chin. J. Polym. Sci. 30 (2012) 824-836.

    6. [6]

      [6] L.P. Wu, L.M. Lu, L. Zhang, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 1-7.

    7. [7]

      [7] L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc. 131 (2009) 11027-11032.

    8. [8]

      [8] Y.Q. He, N.N. Zhang, Y. Liu, et al., Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide, Chin. Chem. Lett. 23 (2012) 41-44.

    9. [9]

      [9] Y.Q. He, N.N. Zhang, X.D. Wang, Adsorption of graphene oxide/chitosan porous materials for metal ions, Chin. Chem. Lett. 22 (2011) 859-862.

    10. [10]

      [10] Y.S. Feng, J.J. Ma, X.Y. Lin, et al., Covalent functionalization of graphene oxide by 9- (4-aminophenyl)acridine and its derivatives, Chin. Chem. Lett. 23 (2012) 1411- 1414.

    11. [11]

      [11] D. Li, M.B. Müller, S. Glije, et al., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechol. 3 (2008) 101-105.

    12. [12]

      [12] A. Österholma, T. Lindfors, J. Kauppila, et al., Electrochemical incorporation of graphene oxide into conducting polymer films, Electrochim. Acta 83 (2012) 463- 470.

    13. [13]

      [13] W.M. Si, W. Lei, Q.L. Hao, et al., Electrodeposition of graphene oxide doped poly(3, 4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone, Electrochim. Acta 85 (2012) 295-301.

    14. [14]

      [14] C.Z. Zhu, J.F. Zhai, S.J. Dong, et al., Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem. 22 (2012) 6300-6306.

    15. [15]

      [15] C. Uggla, E.J. Mellerowicz, B. Sundberg, Indole-3-acetic acid controls cambial growth in scots pine by positional signaling, Plant Physiol. 117 (1998) 113-121.

    16. [16]

      [16] Y.L. Zhou, Z.N. Xu, M. Wang, et al., Electrochemical immunoassay platform for high sensitivity detection of indole-3-acetic acid, Electrochim. Acta 96 (2013) 66-73.

    17. [17]

      [17] H.S. Yin, Z.N. Xu, Y.L. Zhou, et al., An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds, Analyst 138 (2013) 1851-1857.

    18. [18]

      [18] S.J. Hou, J. Zhu, M.Y. Ding, et al., Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry, Talanta 76 (2008) 798-802.

    19. [19]

      [19] Y.L. Wu, B. Hu, Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography, J. Chromatogr. A 1216 (2009) 7657-7663.

    20. [20]

      [20] T. Gan, C.G. Hu, Z.L. Chen, et al., A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite, Talanta 85 (2011) 310-316.

    21. [21]

      [21] B. Sun, L.J. Chen, Y. Xu, et al., Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode, Biosens. Bioelectron. 51 (2014) 164-169.

    22. [22]

      [22] I. Gualandi, E. Scavetta, S. Zappoli, et al., Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode, Biosens. Bioelectron. 26 (2011) 3200-3206.

    23. [23]

      [23] F. Sundfors, J. Bobacka, A. Ivaska, et al., Kinetics of electron transfer between Fe(CN)63-/4- and poly(3,4-ethylenedioxythiophene) studied by electrochemical impedance spectroscopy, Electrochim. Acta 47 (2002) 2245-2251.

    24. [24]

      [24] F.X. Jiang, Z.Q. Yao, R.R. Yue, et al., Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation, Int. J. Hydrogen Energy 37 (2012) 14085-14093.

    25. [25]

      [25] Z. Mousavi, J. Bobacka, A. Ivaska, et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes, J. Electroanal. Chem. 633 (2009) 246-252.

    26. [26]

      [26] R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem. 37 (1965) 1351-1355.

    27. [27]

      [27] R.A. de Toledo, C.M.P. Vaz, Use of a graphite-polyurethane composite electrode for electroanalytical determination of indole-3-acetic acid in soil samples, Microchem. J. 86 (2007) 161-165.

    28. [28]

      [28] L. Henández, P. Henández, F. Patón, Adsorptive stripping determination of indole- 3-acetic acid at a carbon fiber ultramicroelectrode, Anal. Chim. Acta 327 (1996) 117-123.

    29. [29]

      [29] R.Z.Wang, L.T. Xiao, et al.,Amperometricdeterminationof indoc-3-acetic acidbased on platinum nanowires and nanotubes, Chin. Chem. Lett. 17 (2006) 1585-1588.

    30. [30]

      [30] L.N. Huang, Study on Electrochemical Biosensor for the Detection of Phytohormone IAA, Hunan Agricultural University, Changsha, Hunan, China, 2011.

    31. [31]

      [31] J. Bulíčková, R. Sokolová, S. Giannarelli, et al., Determination of plant hormone indole-3-acetic acid in aqueous solution, Electroanalysis 25 (2013) 303-307.

    32. [32]

      [32] K.B. Wu, Y.L. Sun, S.S. Hu, Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode, Sens. Actuators B: Chem. 96 (2003) 658-662.

    33. [33]

      [33] G.N. Chen, Z.F. Zhao, X.L. Wang, et al., Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin, Anal. Chim. Acta 452 (2002) 245-254.

    34. [34]

      [34] S. Mancuso, A.M. Marras, V. Magnus, et al., Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and selfreferencing microelectrode, Anal. Biochem. 341 (2005) 344-351.

    35. [35]

      [35] Y.J. Yang, X.W. Xiong, K.K. Hou, et al., The amperometric determination of indole- 3-acetic acid based on CeCl3-DHP film modified gold electrode, Russ. J. Electrochem. 47 (2011) 47-52.

    36. [36]

      [36] Y. Yardim, M.E. Erez, Electrochemical behavior and electroanalytical determination of indole-3-acetic acid phytohormone on a boron-doped diamond electrode, Electroanalysis 23 (2011) 667-673.

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    5. [5]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    6. [6]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    7. [7]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    8. [8]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    9. [9]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    10. [10]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    13. [13]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    14. [14]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    15. [15]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    16. [16]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return