Citation: Mohammad Ali Taher, Zahra Daliri, Hamid Fazelirad. Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry[J]. Chinese Chemical Letters, ;2014, 25(4): 649-654. doi: 10.1016/j.cclet.2013.12.025 shu

Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry

  • Corresponding author: Hamid Fazelirad, 
  • Received Date: 27 November 2013
    Available Online: 31 December 2013

  • In the present work, an easy solid phase extraction method using alumina modified with polyethylenimine as a new adsorbent was applied to the simultaneous extraction of copper, silver, and palladium ions prior to their determination with electrothermal atomic absorption spectrometry. The analytical procedure involved the complex formation of these cations with polyethylenimine as a chelating agent in buffer media of pH 7.0. Under the optimum conditions, a preconcentration factor of 200, 150, and 200, precision of ±5.4%, ±4.7%, and ±5.2% and linear calibration ranges of 15.0-140, 4.0-93, and 7.5-125 ng/L (in original solution) for Cu, Ag, and Pd were obtained, respectively. Also detection limits of 3.9, 1.1, and 2.0 ng/L were obtained for Cu, Ag, and Pd, respectively. The proposed method was applied to the determination of copper, silver, and palladium in some real samples with satisfactory results.
  • 加载中
    1. [1]

      [1] G. Huand, R.L. Deming, Speciation of bio-available chromium in soils by solidphase extraction and graphite furnace atomic absorption spectrometry, Anal. Chim. Acta 535 (2005) 237-242.

    2. [2]

      [2] O. Mikkelsen, S.M. Skogvold, K.H. Schrøder, Continouos heavy metal monitoring system for application in river and seawater, Electroanalysis 17 (2005) 431-439.

    3. [3]

      [3] H. Ashkenani, M.A. Taher, Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer, J. Electroanal. Chem. 683 (2012) 80-87.

    4. [4]

      [4] S. Jahandari, M.A. Taher, H. Fazelirad, I. Sheikhshoai, Anodic stripping voltammetry of silver(I) using a carbon paste electrode modified with multi-walled carbon nanotubes, Microchim. Acta 180 (2013) 347-354.

    5. [5]

      [5] P. Liang, E. Zhao, F. Li, Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry, Talanta 77 (2009) 1854-1857.

    6. [6]

      [6] H. Fazelirad, M.A. Taher, Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS, Talanta 103 (2013) 375-383.

    7. [7]

      [7] M.A. Cheraghi, H. Taher, Fazelirad, Voltammetric sensing of thallium at a carbon paste electrode modified with a crown ether, Microchim. Acta 180 (2013) 1157-1163.

    8. [8]

      [8] A.A. Atia, A.M. Donia, A.M. Yousif, Synthesis of amine and thio chelating resins and study of their interaction with zinc(II), cadmium(II) and mercury(II), React, Funct. Polym. 56 (2003) 75-82.

    9. [9]

      [9] M. Zeeb, M.R. Ganjali, P. Norouzi, M.R. Kalaee, Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry, Food Chem. Toxicol. 49 (2011) 1086-1091.

    10. [10]

      [10] S. Abbasi, H. Khani, R. Tabaraki, Determination of ultra trace levels of copper in food samples by a highly sensitive adsorptive stripping voltammetric method, Food Chem. 123 (2010) 507-512.

    11. [11]

      [11] E.A. Takara, S.D. Pasini-Cabello, S. Cerutti, J.A. Gasquez, L.D. Martinez, On-line preconcentration/determination of copper in parenteral solutions using activated carbon by inductively coupled plasma optical emission spectrometry, J. Pharm. Biomed. Anal. 39 (2005) 735-739.

    12. [12]

      [12] M. Faraji, Y. Yamini, S. Shariati, Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination, J. Hazard. Mater. 166 (2009) 1383-1388.

    13. [13]

      [13] M.H. Mashhadizadeh, M. Pesteh, M. Talakesh, et al., Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry, Spectrochim. Acta B 63 (2008) 885-888.

    14. [14]

      [14] B. Buke, U. Divrikli, M. Soylak, L. Elci, On-line preconcentration of copper as its pyrocatechol violet complex on Chromosorb 105 for flame atomic absorption spectrometric determinations, J. Hazard. Mater. 163 (2009) 1298-1302.

    15. [15]

      [15] M.C. Yebra, N. Carro, A. Moreno-Cid, Optimization of a field flow pre-concentration system by experimental design for the determination of copper in sea water by flow-injection-atomic absorption spectrometry, Spectrochim. Acta B 57 (2002) 85-93.

    16. [16]

      [16] A.N. Anthemidis, K.G. Ioannou, On-line sequential injection dispersive liquidliquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples, Talanta 79 (2009) 86-91.

    17. [17]

      [17] K. Alizadeh, S. Zohrevand, A.R. Ghiasvand, et al., Selective homogeneous liquid- liquid extraction and preconcentration of copper(II) into a micro droplet using a benzo-substituted macrocyclic diamide, and its determination by electrothermal atomic absorption spectrometry, Microchim. Acta 168 (2010) 115-121.

    18. [18]

      [18] X. Wen, L. Kong, M. Chen, et al., A new coupling of spectrophotometric determination with ultrasound-assisted emulsification dispersive liquid-liquid microextraction of trace silver, Spectrochim. Acta A 97 (2012) 782-787.

    19. [19]

      [19] M. Hosoba, K. Oshita, R.K. Katarina, et al., Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system, Anal. Chim. Acta 639 (2009) 51-56.

    20. [20]

      [20] R.K. Katarina, T. Takayanagi, M. Oshima, S. Motomizu, Synthesis of a chitosanbased chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples, Anal. Chim. Acta 558 (2006) 246-253.

    21. [21]

      [21] C.K. Christou, A.N. Anthemidis, Flow injection on-line displacement/solid phase extraction system coupled with flame atomic absorption spectrometry for selective trace silver determination in water samples, Talanta 78 (2009) 144-149.

    22. [22]

      [22] C.S.T. Arau′ jo, V.N. Alves, H.C. Rezende, N.M.M. Coelho, Development of a flow system for the determination of low concentrations of silver using Moringa oleifera seeds as biosorbent and flame atomic absorption spectrometry, Microchem. J. 96 (2010) 82-85.

    23. [23]

      [23] J.L. Manzoori, G.K. Nezhad, Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination, Anal. Chim. Acta 484 (2003) 155-161.

    24. [24]

      [24] J. Medved, P. Matus, M. Bujdos, J. Kubova, Gold and silver determination in waters by SPHERON Thiol 1000 preconcentration and ETAAS, Chem. Pap. 60 (2006) 27-31.

    25. [25]

      [25] M.A. Rahmana, S. Kaneco, M.N. Amina, T. Suzuki, K. Ohta, Determination of silver in environmental samples by tungsten wire preconcentration method - electrothermal atomic absorption spectrometry, Talanta 62 (2004) 1047-1050.

    26. [26]

      [26] H. Ashkenani, M.A. Taher, Use of ionic liquid in simultaneous microextraction procedure for determination of gold and silver by ETAAS, Microchem. J. 103 (2012) 185-190.

    27. [27]

      [27] M. Moldovan, M.M. Gómez, M.A. Palacios, On-line preconcentration of palladium on alumina microcolumns and determination in urban waters by inductively coupled plasma mass spectrometry, Anal. Chim. Acta 478 (2003) 209-217.

    28. [28]

      [28] J. Fang, L.W. Liu, X.P. Yan, Minimization of mass interferences in quadrupole inductively coupled plasma mass spectrometric (ICP-MS) determination of palladium using a flow injection on-line displacement solid-phase extraction protocol, Spectrochim. Acta B 61 (2006) 864-869.

    29. [29]

      [29] M.V.B. Krishna, M. Ranjit, K. Chandrasekaran, G. Venkateswarlu, D. Karunasagar, On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences, Talanta 79 (2009) 1454-1463.

    30. [30]

      [30] M.R. Jamali, Y. Assadi, F. Shemirani, M. Salavati-Niasari, Application of thiophene- 2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination, Talanta 71 (2007) 1524-1529.

    31. [31]

      [31] J. Nakajima, M. Ohno, K. Chikama, T. Seki, K. Oguma, Determination of traces of palladium in stream sediment and auto catalyst by FI-ICP-OES using on-line separation and preconcentration with QuadraSil TA, Talanta 79 (2009) 1050- 1054.

    32. [32]

      [32] M. Muzikar, C. Fontàs, M. Hidalgo, J. Havel, V. Salvadó, A preconcentration system using polyamine Metalfix-Chelamine resin for the on-line determination of palladium(II) and platinum(IV) by inductively coupled plasma optical emission spectrometry, Talanta 70 (2006) 1081-1086.

    33. [33]

      [33] H. Ebrahimzadeh, N. Tavassoli, M.M. Amini, Y. Fazaeli, H. Abedi, Determination of very low levels of gold and palladium in wastewater and soil samples by atomic absorption after preconcentration on modified MCM-48 and MCM-41 silica, Talanta 81 (2010) 1183-1188.

    34. [34]

      [34] B. Godlewska-Zylkiewiczand, M. Zaleska, Preconcentration of palladium in a flow-through electrochemical cell for determination by graphite furnace atomic absorption spectrometry, Anal. Chim. Acta 462 (2002) 305-312.

  • 加载中
    1. [1]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    5. [5]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    6. [6]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    9. [9]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    10. [10]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    13. [13]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    14. [14]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    15. [15]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    16. [16]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    17. [17]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    18. [18]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    19. [19]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    20. [20]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return