Citation:
Chun-Ning Sun, Min-Min Shen, Lian-Li Deng, Jian-Qiang Mo, Bao-Wen Zhou. Kinetics of ring-opening polymerization of octamethylcyclotetrasiloxane in microemulsion[J]. Chinese Chemical Letters,
;2014, 25(4): 621-626.
doi:
10.1016/j.cclet.2013.12.021
-
Polysiloxane latexes were prepared by microemulsion polymerization of octamethylcyclotetrasiloxane (D4) in the absence of co-emulsifier with octadecyl trimethyl ammonium chloride as a cationic emulsifier and potassium hydrate as an initiator. The particle size was determined by the dynamic light scattering (DLS) technique and the reaction rates of the polymerization were discussed. Furthermore, the kinetics was studied by an initial-rate method, and the effects of the monomer, emulsifier and initiator concentrations and the temperature on polymerization conversions were investigated. From the kinetic results, the rate of polymerization, Rp at 80℃ can be expressed as Rp=k[D4]0.79[OTAC]0.64[KOH]0.38 and the apparent activation energy (Ea), which was determined by half-period method, is 95.32 kJ mol-1.
-
-
-
[1]
[1] X.Y. Zhang, S.Q. Huang, Development of studies on polysiloxane microemulsion, Polymer Bull. 5 (2006) 52-57 (in Chinese).
-
[2]
[2] P.Y. Yu, J. Zhou, X.L. Zhan, F.Q. Chen, Study of preparation of polysiloxane microemulsion by ring-opening emulsion polymerization of octamethylcyclotetrasiloxane (D4), China Surfact. Deterg. Cosmet. 34 (2004) 17-20 (in Chinese).
-
[3]
[3] Z. Yue, D.X. Wang, J.Q. Liu, J. Zhang, S.Y. Feng, Synthesis of polyacrylonitrile-blockpolydimethylsiloxane- block-polyacrylonitrile triblock copolymers via RAFT polymerization, Chin. Chem. Lett. 23 (2012) 989-992.
-
[4]
[4] J.F. Hyde, J.R. Wehrly, Polymerization of organopolysiloxanes, U.S. Pat. 2,891,920, 1959.
-
[5]
[5] X.H. Zhang, X.L. Liu, D.R. Dai, Studies on emulsion polymerization of siloxanes, Acta Polym. Sin. 2 (1982) 154-157 (in Chinese).
-
[6]
[6] X.H. Zhang, Y.J. Yang, S.F. Liu, Studies on emulsion polymerization of polysiloxanes Ⅱ: mechanism of cationic emulsion polymerization of octamethylcyclotetrasiloxane, Acta Polym. Sin. 4 (1982) 266-270 (in Chinese).
-
[7]
[7] X.H. Zhang, Y.J. Yang, X.L. Liu, Studies on emulsion polymerization of siloxanes ⅡI. The formation of emulsion particles during the cationic emulsion polymerization of octamethylcyclotetrasiloxane, Acta Polym. Sin. 2 (1983) 104-109 (in Chinese).
-
[8]
[8] A. De Gunzbourg, J.-C. Favier, P. Hémery, Anionic polymerization of octamethylcyclotetrasiloxane in aqueous emulsion I: preliminary results and kinetic study, Polym. Int. 35 (1994) 179-188.
-
[9]
[9] M. Barrere, F. Ganachaud, D. Bendejacq, et al., Anionic polymerization of octamethylcyclotetrasiloxane in miniemulsion Ⅱ: molar mass analyses and mechanism scheme, Polymer 42 (2001) 7239-7246.
-
[10]
[10] M. Barrere, S.C. da Silva, R. Balic, R. Balic, F. Ganachaud, Synthesis of monodisperse poly(dimethylsiloxane) micro- and macroemulsions, Langmuir 18 (2002) 941-944.
-
[11]
[11] M. Barrere, C. Maitre, F. Ganachaud, P. Hémery, Kinetic study of a, v-dihydroxy polydimethylsiloxane condensation in aqueous emulsion, Macromol. Symp. 151 (2000) 359-364.
-
[12]
[12] A.A. Zhou, S.Y. Zheng, L.Q. Zhang, G.J. Chen, Study on the rate of cationic emulsion polymerization of octamethylcyclotetrasiloxane, Silicone Mater. 22 (2008) 349- 352 (in Chinese).
-
[13]
[13] J.O. Stoffer, T.J. Bone, Polymerization in water in oil microemulsion systems containing methyl methacrylate, J. Dispersion Sci. Technol. 1 (1980) 37-54.
-
[14]
[14] D.J. Halloran, Method of preparing silicone oil-in-water microemulsions, U.S. Pat. 6,071,975, 2000.
-
[15]
[15] G. Palaprat, F. Ganachaud, Synthesis of polydimethylsiloxane microemulsions by self-catalyzed hydrolysis/condensation of dichlorodimethylsilane, C. R. Chim. 6 (2003) 1385-1392.
-
[16]
[16] D.M. Zhang, X.Q. Jiang, C.Z. Yang, Microemulsion polymerization of siloxane with nonionic surfactants as emulsifiers, J. Appl. Polym. Sci. 89 (2003) 3587- 3593.
-
[17]
[17] J.S. Liu, S.Q. Huang, Microemulsion polymerization of D4, Silicone Mater. 20 (2006) 299-302 (in Chinese).
-
[18]
[18] H. Nazir, P.P. Lv, L.Y. Wang, G.P. Lian, S.P. Zhu, G.H. Ma, Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface, J. Colloid Interface Sci. 364 (2011) 56-64.
-
[19]
[19] N. Garti, A. Aserin, E. Wachtel, O. Gans, Y. Shaul, Water solubilization in nonionic microemulsions stabilized by grafted siliconic emulsifiers, J. Colloid Interface Sci. 233 (2001) 286-294.
-
[20]
[20] A. Kumar, H. Uddin, H. Kunieda, H. Furukawa, A. Harashima, Solubilization enhancing effect of AB-type silicone surfactants in microemulsions, J. Dispersion Sci. Technol. 22 (2001) 245-253.
-
[21]
[21] R.M. Hill, Silicone surfactants - new developments, Curr. Opin. Colloid Interface Sci. 7 (2002) 255-261.
-
[22]
[22] L. Zhang, C. Zhang, G.M. Li, Synthesis and properties of copolymer microemulsions of siloxane and acrylate with a high solid content, J. Appl. Polym. Sci. 104 (2007) 851-857.
-
[23]
[23] X.J. Xu, L.M. Gan, Recent advances in the synthesis of nanoparticles of polymer latexes with high polymer-to-surfactant ratios by microemulsion polymerization, Curr. Opin. Colloid Interface Sci. 10 (2005) 239-244.
-
[24]
[24] S.J. Jiang, T. Qiu, X.Y. Li, Kinetic study on the ring-opening polymerization of octamethylcyclotetrasiloxane(D4) inminiemulsion,Polymer51(2010)4087-4094.
-
[25]
[25] Y.Q. Zhuang, X. Ke, X.L. Zhan, Z.H. Luo, Particle kinetics and physical mechanism of microemulsion polymerization of octamethylcyclotetrasiloxane, Powder Technol. 201 (2010) 146-152.
-
[26]
[26] T.S. Chu, Y. Zhang, K.L. Han, The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions, Int. Rev. Phys. Chem. 25 (2006) 201-235.
-
[1]
-
-
-
[1]
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
-
[2]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[3]
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
-
[4]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[5]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[6]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[7]
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
-
[8]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[9]
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
-
[10]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[11]
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
-
[12]
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
-
[13]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[14]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[15]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[16]
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
-
[17]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[18]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[19]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[20]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(722)
- HTML views(18)