Citation: Qing-Bin Jiao, Xin Tan, Ji-Wei Zhu, Jian-Xiang Gao. The effects of ultrasound frequency and power on the activation energy in Si-KOH reaction system[J]. Chinese Chemical Letters, ;2014, 25(4): 617-620. doi: 10.1016/j.cclet.2013.12.012 shu

The effects of ultrasound frequency and power on the activation energy in Si-KOH reaction system

  • Corresponding author:
  • Received Date: 17 September 2013
    Available Online: 6 December 2013

    Fund Project:

  • The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activation energy, and reducing activation energy is propitious to promoting a chemical reaction. In the present paper, the relationship between the activation energy in Si-KOH reaction system and the ultrasound frequency and power has been discussed for the first time. The range of ultrasound frequency and power is 40-100 kHz (interval by 20 kHz) and 10-50W (interval by 10 W), respectively. The experimental data indicate that the activation energy decreases with the increasing ultrasound power. Comparing with the activation energy without ultrasound irradiation, the results in our paper indicate that ultrasound irradiation could reduce the activation energy in Si-KOH reaction system and increase the reaction rate.
  • 加载中
    1. [1]

      [1] C.S. Zhou, H. Ma, Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis), J. Agric. Food Chem. 54 (2006) 2223-2228.

    2. [2]

      [2] H.M. Moghaddam, S. Nasirian, Decreasing of the activation energy of TiO2 nanoparticles by applying ultrasound waves using the sol-gel method, Iran. J. Phys. Res. 11 (2012) 411-416.

    3. [3]

      [3] S.U. Rege, R.T. Yang, C.A. Cain, Desorption by ultrasound: phenol on activated carbon and polymeric resin, AIChE J. 44 (1998) 1519-1528.

    4. [4]

      [4] E.X. Leaes, D. Lima, L. Miklasevicius, et al., Effect of ultrasound-assisted irradiation on the activities of a-amylase and amyloglucosidase, Biocatal. Agric. Biotechnol. 2 (2013) 21-25.

    5. [5]

      [5] M. Souza, E.T. Mezadri, E. Zimmerman, et al., Evaluation of activity of a commercial amylase under ultrasound-assisted, Ultrason. Sonochem. 20 (2013) 89-94.

    6. [6]

      [6] M.A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Investigation of the effect of ultrasonic waves on the enhancement of efficiency of direct photolysis and photooxidation processes on the removal of a model contaminant from textile industry, Global NEST J. 10 (2008) 8-15.

    7. [7]

      [7] M.R. Wang, L. Jiang, S.F. Zhou, Z.Y. Zhang, Z.C. Ji, Ultrasound-assisted synthesis and preliminary bioactivity of novel 2H-1,2,4-thiadiazolo [2,3] pyrimidine derivatives containing fluorine, Chin. Chem. Lett. 23 (2012) 561-564.

    8. [8]

      [8] M.R.P. Heravi, An efficient fluorination of b-ketosulfones promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation using SelectfluorTM F-TEDA-BF4, Chin. Chem. Lett. 21 (2010) 1399-1402.

    9. [9]

      [9] C.L. Pieck, R.J. Verderone, E.L. Jablonski, J.M. Parena, Burning of coke on Pt Re/Al2O3 catalyst: activation energy and oxygen reaction order, Appl. Catal. 55 (1989) 1-10.

    10. [10]

      [10] W.T. Tsang, S. Wang, Preferentially etched diffraction gratings in silicon, J. Appl. Phys. 46 (1975) 2163-2166.

    11. [11]

      [11] J. Sarathy, D.C. Diaz, J.C. Campbell, Crystallographically limited submicrometer gratings in (1 0 0) and (2 1 1) silicon, Opt. Lett. 20 (1995) 1216-1218.

    12. [12]

      [12] C.H. Chang, R.K. Heilmann, R.C. Fleming, et al., Fabrication of sawtooth diffraction gratings using nanoimprint lithography, J. Vac. Sci. Technol. 21 (2003) 2755- 2759.

    13. [13]

      [13] M.P. Kowalski, R.K. Heilmann, M.L. Schattenburg, et al., Near-normal-incidence extreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazed grating, Appl. Opt. 45 (2006) 1676-1679.

    14. [14]

      [14] U.U. Graf, D.T. Jaffe, E.J. Kim, et al., Fabrication and evaluation of an etched infrared diffraction grating, Appl. Opt. 33 (1994) 96-102.

    15. [15]

      [15] L.D. Keller, D.T. Jaffe, O.A. Ershov, B. Thomas, U.U. Graf, Fabrication and testing of chemically micromachined silicon echelle gratings, Appl. Opt. 39 (2000) 1094- 1105.

    16. [16]

      [16] J.P. Marsh, D.J. Mar, D.T. Jaffe, Production and evaluation of silicon immersion gratings for infrared astronomy, Appl. Opt. 46 (2007) 3400-3416.

    17. [17]

      [17] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc. 137 (1990) 3612-3626.

    18. [18]

      [18] E. Herr, H. Baltes, KOH etching of high-index crystal planes in silicon, Sens. Actuators A: Phys. 31 (1992) 283-287.

    19. [19]

      [19] P.M. Zavrocky, T. Earles, N.L. Pokrovskiy, J.A. Green, B.E. Burns, Fabrication of vertical sidewalls by anisotropic etching of silicon (1 0 0) wafers, J. Electrochem. Soc. 141 (1994) 3182-3188.

    20. [20]

      [20] J.B. Price, Anisotropic etching of silicon with KOH-H2O-isopropyl alcohol, in: H.R. Huff, R.R. Burgess (Eds.), Semiconductor Silicon, Electrochemical Society, Pennington, 1973, p. 339.

    21. [21]

      [21] K. Ohwada, Y. Negoro, Y. Konaka, T. Oguchi, Groove depth uniformization in[1 1 0] Si anisotropic etching by ultrasonic wave and application to accelerometer fabrication, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Amsterdam, Netherlands, IEEE, 1995, pp. 100-105.

    22. [22]

      [22] T. Baum, D.J. Schiffrin, AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si(1 0 0) in KOH for micromachining application, J. Micromech. Microeng. 7 (1997) 338-342.

    23. [23]

      [23] J. Chen, L.T. Lin, Z.J. Li, et al., Study of anisotropic etching of (1 0 0) Si with ultrasonic agitation, Sens. Actuators A 96 (2002) 152-156.

    24. [24]

      [24] C.R. Yang, P.Y. Chen, Y.C. Chion, R.T. Lee, Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution, Sens. Actuators A 119 (2005) 263-270.

    25. [25]

      [25] Q.B. Jiao, Bayanheshig, X. Tan, J.W. Zhu, Numerical simulation of ultrasonic enhancement on mass transfer in liquid-solid reaction by a new computational model, Ultrason. Sonochem. 21 (2014) 535-541.

    26. [26]

      [26] R.L. Bristol, J.A. Britten, R. Hemphill, P. Jelinsky, M. Hurwitz, Silicon diffraction gratings for use in the far and extreme-ultraviolet, Proc. SPIE 3114 (1997) 580- 585.

    27. [27]

      [27] J. Peng, C. Chao, J.Y. Dai, H.L.W. Chan, H.S. Luo, Micro-patterning of 0.70Pb (Mg1/3Nb2/3)O3-0.30PbTiO3 single crystals by ultrasonic wet chemical etching, Mater. Lett. 62 (2008) 3127-3130.

  • 加载中
    1. [1]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    2. [2]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    3. [3]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    4. [4]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    5. [5]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    6. [6]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    7. [7]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    8. [8]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    9. [9]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    10. [10]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    13. [13]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    14. [14]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    15. [15]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    16. [16]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    17. [17]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    18. [18]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

Metrics
  • PDF Downloads(0)
  • Abstract views(639)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return