Citation:
Jing-Wei Wan, Xue-Bing Ma, Rong-Xing He, Ming Li. An easy route to exotic 9-epimers of 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R, 9S)-configurations through two inversions of configuration[J]. Chinese Chemical Letters,
;2014, 25(4): 557-560.
doi:
10.1016/j.cclet.2013.12.008
-
Four exotic chiral organocatalysts, 9-amino-(9-deoxy) cinchona alkaloids with (8S, 9R) and (8R, 9S)- configurations, were conveniently synthesized for the first time in 27-72% total yields through two conversions of configuration at the 9-stereogenic centers of commercially available cinchona alkaloids.
-
-
-
[1]
[1] (a) J. Seayad, B. List, Asymmetric organocatalysis, Org. Biomol. Chem. 3 (2005) 719-724; (b) C.F. Barbas ⅡI, Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus, Angew. Chem. Int. Ed. 47 (2008) 42-47; (c) W. Notz, F. Tanaka, C.F. Barbas ⅡI, Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric Aldol, Mannich, Michael, and Diels-Alder reactions, Acc. Chem. Res. 37 (2004) 580-591; (d) H. Chen, R. Jiang, Q.F. Wang, et al., Synthesis of chiral dihydrofuran compounds by thiourea derivatives-catalyzed "interrupted" Feist-Bénary reaction, Chin. Chem. Lett. 21 (2010) 167-170.
-
[2]
[2] (a) S.K. Tian, Y.G. Chen, J.F. Hang, et al., Asymmetric organic catalysis with modified cinchona alkaloids, Acc. Chem. Res. 37 (2004) 621-631; (b) S.J. Connon, Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts, Chem. Commun. (2008) 2499-2510; (c) T. Marcelli, H. Hiemstra, Cinchona alkaloids in asymmetric organocatalysis, Synthesis 8 (2010) 1229-1279.
-
[3]
[3] (a) J. Zhou, V. Wakchaure, P. Kraft, B. List, Primary-amine-catalyzed enantioselective intramolecular aldolizations, Angew. Chem. Int. Ed. 47 (2008) 7656-7658; (b) B.L. Zheng, Q.Z. Liu, C.S. Guo, X.L. Wang, L. He, Highly enantioselective direct Aldol reaction catalyzed by cinchona derived primary amines, Org. Biomol. Chem. 5 (2007) 2913-2915; (c) J.Q. Zhou, J.W. Wan, X.B. Ma, W. Wang, Copolymer-supported heterogeneous organocatalyst for asymmetric Aldol addition in aqueous medium, Org. Biomol. Chem. 10 (2012) 4179-4185; (d) W.Wang, X.B.Ma, J.W.Wan, J. Cao, Q. Tang, Preparation and confinement effect of a heterogeneous 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric Aldol addition in aqueous medium, Dalton Trans. 41 (2012) 5715-5726.
-
[4]
[4] R.P. Singh, K. Bartelson, Y. Wang, et al., Enantioselective Diels-Alder reaction of simple α,β-unsaturated ketones with a cinchona alkaloid catalyst, J. Am. Chem. Soc. 130 (2008) 2422-2423.
-
[5]
[5] (a) H.M. Li, Y.Q. Wang, L. Deng, Enantioselective Friedel-Crafts reaction of indoles with carbonyl compounds catalyzed by bifunctional cinchona alkaloids, Org. Lett. 8 (2006) 4063-4065; (b) G. Bartoli, M. Bosco, A. Carlone, et al., Organocatalytic asymmetric Friedel- Crafts alkylation of indoles with simple α,β-unsaturated ketones, Org. Lett. 9 (2007) 1403-1405.
-
[6]
[6] P. Hammar, T. Marcelli, H. Hiemstra, F. Himo, Density functional theory study of the Cinchona thiourea-catalyzed Henry reaction: mechanism and enantioselectivity, Adv. Synth. Catal. 349 (2007) 2537-2548.
-
[7]
[7] T.Y. Liu, H.L. Cui, J. Long, et al., Organocatalytic and highly stereoselective direct vinylogous Mannich reaction, J. Am. Chem. Soc. 129 (2007) 1878-1879.
-
[8]
[8] (a) P.F. Li, Y.C. Wang, X.M. Liang, J.X. Ye, Asymmetric multifunctional organocatalytic Michael addition of nitroalkanes to α,β-unsaturated ketones, Chem. Commun. 28 (2008) 3302-3304; (b) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts, Org. Lett. 7 (2005) 1967-1969; (c) J.P. Malerich, K. Hagihara, V.H. Rawal, Chiral squaramide derivatives are excellent hydrogen bond donor catalysts, J. Am. Chem. Soc. 130 (2008) 14416-14417.
-
[9]
[9] H.Y. Jiang, C.F. Yang, C. Li, et al., Heterogeneous enantioselective hydrogenation of aromatic ketones catalyzed by cinchona- and phosphine-modified iridium catalysts, J. Angew. Chem. Int. Ed. 47 (2008) 9240-9244.
-
[10]
[10] (a) X.W. Wang, C.M. Reisinger, B. List, Catalytic asymmetric epoxidation of cyclic enones, J. Am. Chem. Soc. 130 (2008) 6070-6071; (b) X.J. Lu, Y. Liu, B.F. Sun, B. Cindric, L. Deng, Catalytic enantioselective peroxidation of α,β-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 8134-8135; (c) Q.F. Wang, H. Chen, P. Liu, et al., Asymmetric epoxidation of alpha, betaenones catalyzed by chiral amine salts, Chin. J. Org. Chem. 29 (2009) 1617-1620; (d) X.D. Liu, X.L. Bai, X.P. Qiu, L.X. Gao, Asymmetric phase-transfer mediated epoxidation of alpha, beta-enones using dendritic catalysts derived from cinchona alkaloids, Chin. Chem. Lett. 16 (2005) 975-978.
-
[11]
[11] W. Chen, W. Du, Y.Z. Duan, et al., Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding, Angew. Chem. Int. Ed. 46 (2007) 7667-7670.
-
[12]
[12] H. Brunner, M.A. Baur, a-Amino acid derivatives by enantioselective decarboxylation, Eur. J. Org. Chem. (2003) 2854-2862.
-
[13]
[13] (a) S.H. Oh, H.S. Rho, J.W. Lee, et al., A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: prevention of catalyst aggregation, Angew. Chem. Int. Ed. 47 (2008) 7872-7875; (b) H.S. Rho, S.H. Oh, J.W. Lee, et al., Bifunctional organocatalyst for methanolytic desymmetrization of cyclic anhydrides: increasing enantioselectivity by catalyst dilution, Chem. Commun. (2008) 1208-1210.
-
[14]
[14] M. Bartók, Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts, Chem. Rev. 110 (2010) 1663-1705.
-
[15]
[15] Ł. Sidorowicz, J. Skarżewski, Easy access to 9-epimers of cinchona alkaloids: onepot inversion by Mitsunobu esterification-saponification, Synthesis 5 (2011) 708-710.
-
[16]
[16] H. Brunner, J. Bügler, B. Nuber, Enantioselective catalysis 98. Preparation of 9- amino(9-deoxy)cinchona alkaloids, Tetrahedron: Asymmetry 6 (1995) 1699- 1702.
-
[17]
[17] C.G. Oliva, A.M.S. Silva, D.I.S.P. Resende, F.A.A. Paz, J.A.S. Cavaleiro, Highly enantioselective 1,4-Michael additions of nucleophiles to unsaturated aryl ketones with organocatalysis by bifunctional cinchona alkaloids, Eur. J. Org. Chem. (2010) 3449-3458.
-
[18]
[18] H. Brunner, P. Schmidt, M. Prommesberger, Enantioselective catalysis. Part 133: Conformational analysis of amides of 9-amino(9-deoxy)epicinchonine, Tetrahedron: Asymmetry 11 (2000) 1501-1502.
-
[1]
-
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[3]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[4]
Ji Zhang , Tong Zhang , Qiao An , Peng Zhang , Cai-Yan Tian , Chun-Mao Yuan , Ping Yi , Zhan-Xing Hu , Xiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927
-
[5]
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
-
[6]
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
-
[7]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[8]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[9]
Min-Hang Zhou , Jun Jiang , Wei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446
-
[10]
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
-
[11]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[12]
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
-
[13]
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
-
[14]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[15]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[16]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[17]
. . University Chemistry, 2024, 39(9): 0-0.
-
[18]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[19]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[20]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(625)
- HTML views(0)