Citation: Xuan Zhang, Xu-Dong Li. Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines:Fundamental understanding toward raising LUMO energy of fullerene electron-acceptor[J]. Chinese Chemical Letters, ;2014, 25(4): 501-504. doi: 10.1016/j.cclet.2013.11.050 shu

Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines:Fundamental understanding toward raising LUMO energy of fullerene electron-acceptor

  • Corresponding author: Xuan Zhang, 
  • Received Date: 24 October 2013
    Available Online: 22 November 2013

    Fund Project: This work was financially supported by Shanghai Pujiang Program (No. 11PJ1400200) (No. 11PJ1400200) Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ067) (No. 12ZZ067)

  • A series of substituted para-, meta- and ortho-nitrophenyl derivatives of fulleropyrrolidine were synthesized to investigate the effects of the position of substitution on electronic properties by using steady-state absorption and fluorescence spectra, combined with DFT calculations. The results confirmed that the position of substitution has little effect on absorption and fluorescence spectra, whereas a significant effect was observed on their LUMO energy levels. The theoretical calculations revealed that the LUMO energy of the ortho-nitrophenyl substituted derivative was increased 0.1 eV above those of para- and meta-substitution. The prominent effect of ortho-substitution was attributed to the through-space orbital interaction between spatially closed electron-withdrawing nitro group and fullerene cage. These findings could provide fundamental insights in raising LUMO levels of C60-based electron acceptor materials and an alternative strategy to increase open circuit voltage Voc in polymer solar cells.
  • 加载中
    1. [1]

      [1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162-163.

    2. [2]

      [2] D.M. Guldi, Fullerenes: three dimensional electron acceptor materials, Chem. Commun. (2000) 321-327.

    3. [3]

      [3] D.M. Guldi, B.M. Illescas, C.M. Atienza, M. Wielopolski, N. Martín, Fullerene for organic electronics, Chem. Soc. Rev. 38 (2009) 1587-1597.

    4. [4]

      [4] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat. Photonics 6 (2012) 153-161.

    5. [5]

      [5] B.C. Thompson, J.M.J. Fréchet, Polymer-fullerene composite solar cells, Angew. Chem. Int. Ed. 47 (2008) 58-77.

    6. [6]

      [6] G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 21 (2009) 1323-1338.

    7. [7]

      [7] D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev. 42 (2013) 2824-2860.

    8. [8]

      [8] J.B. You, L.T. Dou, K. Yoshimura, et al., A polymer tandem solar cell with 10.6% power conversion efficiency, Nat. Commun. 4 (2013) 1446.

    9. [9]

      [9] C.J. Brabec, A. Cravino, D. Meissner, et al., Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11 (2001) 374-380.

    10. [10]

      [10] M.C. Scharber, D. Wühlbacher, M. Koppe, et al., Design rules for donors in bulkheterojunction solar cells - towards 10% energy-conversion efficiency, Adv. Mater. 18 (2006) 789-794.

    11. [11]

      [11] Y.F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res. 45 (2012) 723-733.

    12. [12]

      [12] F.B. Kooistra, J. Knol, F. Kastenberg, et al., Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor, Org.

    13. [13]

      [13] Y.J. He, H.Y. Chen, J.H. Hou, Y.F. Li, Indene-C60 bisadduct: a new acceptor for highperformance polymer solar cells, J. Am. Chem. Soc. 132 (2010) 1377-1382.

    14. [14]

      [14] C.L. Chochos, N. Tagmatarchis, V.G. Gregoriou, Rational design on n-type organic materials for high performance organic photovoltaics, RSC Adv. 3 (2013) 7160-7181.

    15. [15]

      [15] H.Y. Chen, J. Hou, S. Zhang, et al., Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics 3 (2009) 649-653.

    16. [16]

      [16] C. Liu, Y.J. Li, C.H. Li, et al., New methanofullerenes containing amide as electron acceptor for construction photovoltaic devices, J. Phys. Chem. C 113 (2009) 21970-21975.

    17. [17]

      [17] C. Liu, S.Q. Xiao, X.P. Shu, et al., Synthesis and photovoltaic properties of novel monoadducts and bisadducts based on amide methanofullerene, ACS Appl. Mater. Interfaces 4 (2012) 1065-1071.

    18. [18]

      [18] Y. Matsuo, Design concept for high-LUMO-level fullerene electron-acceptors for organic solar cells, Chem. Lett. 41 (2012) 754-759.

    19. [19]

      [19] F. Matsumoto, T. Iwai, K. Moriwaki, et al., Design of fullerene derivatives for stabilizing LUMO energy using donor groups placed in spatial proximity to the C60 cage, J. Org. Chem. 77 (2012) 9038-9043.

    20. [20]

      [20] Y. Numata, Y. Tajima, J. Kawashima, The substituent effect to the reduction potentials of heterocycle-fused [60] fullerene derivatives, in: 214th ECS Meeting, 2008, Abstract #2719.

    21. [21]

      [21] R.F. Peng, B. Jin, K. Cao, et al., Study on the synthetic technology of nitrofulleropyrrolidine, Chinese J. Org. Chem. 27 (2007) 276-278.

    22. [22]

      [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

    23. [23]

      [23] H. Wang, Y.J. He, Y.F. Li, et al., Photophysical and electronic properties of five PCBM-like C60 derivatives: spectral and quantum chemical view, J. Phys. Chem. A 116 (2012) 255-262.

    24. [24]

      [24] R. Koeppe, N.S. Sariciftci, Photoinduced charge and energy transfer involving fullerene derivatives, Photochem. Photobiol. Sci. 5 (2006) 1122-1131.

    25. [25]

      [25] G.D. Han, W.R. Collins, T.L. Andrew, et al., Cyclobutadiene-C60 adducts: n-type materials for organic photovoltaic cells with high Voc, Adv. Funct. Mater. 23 (2013) 3061-3069.

  • 加载中
    1. [1]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    2. [2]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    3. [3]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    6. [6]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    7. [7]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    8. [8]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    9. [9]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    10. [10]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    11. [11]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    12. [12]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    13. [13]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    14. [14]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    15. [15]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    18. [18]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    19. [19]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    20. [20]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

Metrics
  • PDF Downloads(0)
  • Abstract views(697)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return