Citation: Cai-Sheng Wu, Cai-Hong Wang, Jin-Lan Zhang, Dong-Mei Wang, Yuan-Feng Tong, Song Wu, Hai-Wei Huang, Bao-Ming Ning. Separation, determination of six impurities in methotrexate drug substance using ultra-performance liquid chromatography[J]. Chinese Chemical Letters, ;2014, 25(3): 447-450. doi: 10.1016/j.cclet.2013.11.048 shu

Separation, determination of six impurities in methotrexate drug substance using ultra-performance liquid chromatography

  • Corresponding author: Jin-Lan Zhang, 
  • Received Date: 30 August 2013
    Available Online: 14 November 2013

    Fund Project: We thank the Ministry of Public Health of the People's Republic of China (No. 200802038) (No. 200802038)

  • Methotrexate (MTX) is an antineoplastic therapeutic medicine as antimetabolite of folic acid. In this paper, a sensitive and rapid ultra-performance liquid chromatographic (UPLC) method was developed and validated for the separation and determination of impurities in MTX drug substances. The UPLC method was accomplished on an Agilent Zorbax Extend C-18 (50 mm×4.6 mm, 1.8 mm) with a gradient elution system composed of sodium dihydrogen phosphate in water (20 mmol/L, pH 3.0) and acetonitrile. The flow rate was 2.2 mL/min. The method was validated. The calibration curves displayed good linearity (r > 0.999) within the tested concentration ranges. The limit of detection (LOD) and limit of quantification (LOQ) of the six analytes were all less than 0.774 μg/mL and 1.03 mg/mL. The relative standard deviation (RSD) for intra-and inter-day precision of the six analytes was less than 9.8%, including at the LOQ. The average recovery ranged from 95.2% to 103% except at the LOQ, where recovery ranged from 82.7% to 117%. The validated method was successfully used to determine the relative abundance of six impurities in the MTX drug substances.
  • 加载中
    1. [1]

      [1] European Pharmacopoeia, European Directorate for the Quality of Medicines & Health Care, 7th ed., European Pharmacopoeia, Strasbourg, 2010, pp. 2467-2469.

    2. [2]

      [2] R. Gotti, D.A. El-Hady, V. Andrisano, et al., Determination of the chiral and achiral related substances of methotrexate by cyclodextrin-modified micellar electrokinetic chromatography, Electrophoresis 25 (2004) 2830-2837.

    3. [3]

      [3] Methotrexate, Wikipedia, http://en.wikipedia.org/wiki/Methotrexate.

    4. [4]

      [4] S. Shen, T. O'Brien, L.M. Yap, H.M. Prince, C.J. McCormack, The use of methotrexate in dermatology: a review, Australas. J. Dermatol. 53 (2012) 1-18.

    5. [5]

      [5] The Stationery Office, The British Pharmacopoeia Commission British Pharmacopoeia, The Stationery Office, 2012, pp. 1427-1429.

    6. [6]

      [6] The United States Pharmacopeial Convention, The 35th revision of the United States Pharmacopeia (USP 35) and the 30th edition of the National Formulary (NF 30), Rockville, MD, 2011, pp. 3855-3857.

    7. [7]

      [7] The Pharmacopoeia Commission of PRC, The Pharmacopoeia of the People's Republic of China. Part Ⅱ, China Medical Science and Technology Press, Beijing, 2010p. 149.

    8. [8]

      [8] C.S. Wu, Y.F. Tong, P.Y. Wang, et al., Identification of impurities in methotrexate drug substances using high-performance liquid chromatography coupled with a photodiode array detector and Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Spectrom. 27 (2013) 971-978.

    9. [9]

      [9] D.A. El-Hady, N.A. El-Maali, R. Gotti, et al., Methotrexate determination in pharmaceuticals by enantioselective HPLC, J. Pharm. Biomed. Anal. 37 (2005) 919-925.

    10. [10]

      [10] K. Michail, M.S. Moneeb, Determination of methotrexate and indomethacin in urine using SPE-LC-DAD after derivatization, J. Pharm. Biomed. Anal. 55 (2011) 317-324.

    11. [11]

      [11] M. Uchiyama, T. Matsumoto, T. Matsumoto, et al., Simple and sensitive HPLC method for the fluorometric determination of methotrexate and its major metabolites in human plasma by post-column photochemical reaction, Biomed. Chromatogr. 26 (2012) 76-80.

    12. [12]

      [12] S. Fang, C.P. Lollo, C. Derunes, M.J. LaBarre, Development and validation of a liquid chromatography method for simultaneous determination of three process-related impurities: yeastolates, triton X-100 and methotrexate, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 (2012) 3612-3619.

    13. [13]

      [13] H.L. Cheng, S.S. Chiou, Y.M. Liao, et al., Analysis of methotrexate and its eight metabolites in cerebrospinal fluid by solid-phase extraction and triple-stacking capillary electrophoresis, Anal. Bioanal. Chem. 398 (2010) 2183-2190.

    14. [14]

      [14] G. Chen, J.P. Fawcett, M. Mikov, et al., Simultaneous determination of methotrexate and its polyglutamate metabolites in Caco-2 cells by liquid chromatographyandem mass spectrometry, J. Pharm. Biomed. Anal. 50 (2009) 262-266.

    15. [15]

      [15] E. den Boer, S.G. Heil, B.D. van Zelst, et al., A U-HPLC-ESI-MS/MS-based stable isotope dilution method for the detection and quantitation of methotrexate in plasma, Ther. Drug Monit. 34 (2012) 432-439.

    16. [16]

      [16] ICH Guidelines, Impurities in new drug substances Q3A(R2), October 2006.

  • 加载中
    1. [1]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    2. [2]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    3. [3]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    4. [4]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    5. [5]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    6. [6]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    7. [7]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    10. [10]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    11. [11]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    12. [12]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    13. [13]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    14. [14]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    15. [15]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    16. [16]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    17. [17]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    18. [18]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    19. [19]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    20. [20]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return