Citation: Xia-Fei Xu, Yan Xiong, Xue-Ge Ling, Xi-Mi Xie, Jie Yuan, Shu-Ting Zhang, Zhong-Rong Song. A practical synthesis of bis(indolyl)methanes catalyzed by BF3·Et2O[J]. Chinese Chemical Letters, ;2014, 25(3): 406-410. doi: 10.1016/j.cclet.2013.11.038 shu

A practical synthesis of bis(indolyl)methanes catalyzed by BF3·Et2O

  • Corresponding author: Yan Xiong,  Zhong-Rong Song, 
  • Received Date: 19 August 2013
    Available Online: 11 November 2013

    Fund Project: We are grateful for scientific research fundings from the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Partenariats Hubert Curien Xu Guangqi 2012 (No. 27967RE) (No. 27967RE)

  • Practical BF3·Et2O catalyzed reactions between indoles and a series of carbonyl compounds at room temperature are described, which afford bis(indolyl)methanes with isolated yields up to 96%.
  • 加载中
    1. [1]

      [1] K. Ishihara, Lewis Acids in Organic Synthesis, Wiley-VCH, Weinheim, 2008p. 96.

    2. [2]

      [2] H. Umeyama, K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. 3. Energy and charge decomposition analyses for several strong complexes: OC-BH3, H3N-BH3, CH3H2N-BH3, (CH3)3N-BH3, and H3N-BF3, J. Am. Chem. Soc. 98 (1976) 7208-7220.

    3. [3]

      [3] C. Laurence, J.F. Gal, Lewis Basicity and Affinity Scales: Data and Measurement, John Wiley & Sons, Wiltshire, 2010p. 85.

    4. [4]

      [4] G.K.S. Prakash, F. Paknia, T. Mathew, et al., Fluoroanalogs of DDT: superacidic BF3-H2O catalyzed facile synthesis of 1,1,1-trifluoro-2,2-diarylethanes and 1,1-difluoro-2,2-diarylethanes, Org. Lett. 13 (2011) 4128-4131.

    5. [5]

      [5] J. Zakrzewski, M. Karpińska, Z. Maliński, A large scale synthesis of a natural antibiotic 2,4-diacetylophloroglucinol (DAPG), Arch. Pharm. Chem. Life Sci. 340 (2007) 103-106.

    6. [6]

      [6] (a) N.C. Ma, K.M. Wu, L. Huang, An interesting cyclization of N-methyl-3-phenyl-N-(2-(Z)-phenylethenyl)-cis-oxiranecarboxamide, J. Heterocycl. Chem. 45 (2008) 785-787; (b) D.J. Xiao, L.J. Wang, X.M. Feng, A practical synthetic pathway to polysubstituted tetrahydropyridines via multicomponent reactions catalyzed by BF3 OEt2, Synlett 10 (2005) 1531-1540.

    7. [7]

      [7] B. Xu, Z.L. Guo, W.Y. Jin, et al., Multistep one-pot synthesis of enantioenriched polysubstituted cyclopenta[b]indoles, Angew. Chem. Int. Ed. 51 (2012) 1059-1062.

    8. [8]

      [8] B.Q. Bao, Q.S. Sun, X.S. Yao, et al., Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp., J. Nat. Prod. 68 (2005) 711-715.

    9. [9]

      [9] S. Sakemit, H.H. Sun, Nortopsentins A, B, and C. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge spongosorites ruetzleri, J. Org. Chem. 56 (1991) 4304-4307.

    10. [10]

      [10] (a) S. Tsujii, K.L. Rinehart, S.P. Gunasekera, et al., Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: antiviral and antitumor bis(indoly1)imidazoles from caribbean deep-sea sponges of the family halichondriidae. Structural and synthetic studies, J. Org. Chem. 53 (1988) 5446-5453; (b) C.M. Cover, S.J. Hsieh, S.H. Tran, et al., Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling, J. Biol. Chem. 273 (1998) 3838-3847; (c) S. Safe, S. Papineni, S. Chintharlapalli, Cancer chemotherapy with indole-3-carbinol, bis(30-indolyl)methane and synthetic analogs, Cancer Lett. 269 (2008) 326-338; (d) T.P. Pathak, J.G. Osiak, R.M. Vaden, B.E. Welm, M.S. Sigman, Synthesis and preliminary biological study of bisindolylmethanes accessed by an acid-catalyzed hydroarylation of vinyl indoles, Tetrahedron 68 (2012) 5203-5215.

    11. [11]

      [11] M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Bis-and trisindolylmethanes (BIMs and TIMs), Chem. Rev. 110 (2010) 2250-2293.

    12. [12]

      [12] D. Chen, L. Yu, P.G. Wang, Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones, Tetrahedron Lett. 37 (1996) 4467-4470.

    13. [13]

      [13] J.S. Yadav, B.V.S. Reddy, B. Padmavani, M.K. Gupta, Gallium(Ⅲ) halide-catalyzed coupling of indoles with phenylacetylene: synthesis of bis(indolyl)phenylethanes, Tetrahedron Lett. 45 (2004) 7577-7579.

    14. [14]

      [14] M. Hosseini-Sarvari, Synthesis of bis(indolyl)methanes using a catalytic amount of ZnO under solvent-free conditions, Synth. Commun. 38 (2008) 832-840.

    15. [15]

      [15] S.J. Ji, M.F. Zhou, D.G. Gu, Z.Q. Jiang, T.P. Loh, Efficient Fe-catalyzed synthesis of bis(indolyl)methanes in ionic liquids, Eur. J. Org. Chem. 2004 (2004) 1584-1587.

    16. [16]

      [16] S.A. Sadaphal, A.H. Kategaonkar, V.B. Labade, M.S. Shingare, Synthesis of bis(indolyl) methanes using aluminium oxide (acidic) in dry media, Chin. Chem. Lett. 21 (2010) 39-42.

    17. [17]

      [17] M. Jafarpour, A. Rezaeifard, T. Golshani, A new catalytic method for ecofriendly synthesis of bis-and trisindolylmethanes by zirconyldodecylsulfate under mild conditions, J. Heterocycl. Chem. 46 (2009) 535-539.

    18. [18]

      [18] (a) B.P. Bandgar, K.A. Shaikh, Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions, Tetrahedron Lett. 44 (2003) 1959-1961; (b) S.J. Ji, S.Y. Wang, Y. Zhang, T.P. Loh, Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions, Tetrahedron 60 (2004) 2051-2055.

    19. [19]

      [19] S.R. Mendes, S. Thurow, M.P. Fortes, et al., Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface, Tetrahedron Lett. 53 (2012) 5402-5406.

    20. [20]

      [20] Q. Yang, Z.L. Yin, B.L. Ouyang, Y.Y. Peng, Pyridinium tribromide catalyzed condensation of indoles and aldehydes to form bisindolylalkanes, Chin. Chem. Lett. 22 (2011) 515-518.

    21. [21]

      [21] K.P. Boroujeni, K. Parvanak, Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst, Chin. Chem. Lett. 22 (2011) 939-942.

    22. [22]

      [22] M. Chakrabarty, N. Ghosh, R. Basaka, Y. Harigaya, Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindolylalkanes and vibrindole A, Tetrahedron Lett. 43 (2002) 4075-4078.

    23. [23]

      [23] J.S. Yadav, B.V.S. Reddy, G. Satheesh, Montmorillonite clay catalyzed alkylation of pyrroles and indoles with cyclic hemi-acetals, Tetrahedron Lett. 45 (2004) 3673-3676.

    24. [24]

      [24] C.L. Zhang, Z.Q. Du, Synthesis of bis-indolylmethanes catalyzed by oxone, Chin. Chem. Lett. 20 (2009) 1411-1414.

    25. [25]

      [25] J. Azizian, F. Teimouri, M.R. Mohamadizadeh, Ammonium chloride catalyzed onepot synthesis of diindolylmethanes under solvent-free conditions, Catal. Commun. 8 (2007) 1117-1121.

    26. [26]

      [26] H. Alinezhad, A.H. Haghighi, F. Salehian, A green method for the synthesis of bisindolylmethanes and 3,3'-indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions, Chin. Chem. Lett. 21 (2010) 183-186.

    27. [27]

      [27] P.J. Das, J. Das, Synthesis of aryl/alkyl(2,2'-bis-3-methylindolyl)methanes and aryl(3,3'-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation, Tetrahedron Lett. 53 (2012) 4718-4720.

    28. [28]

      [28] N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Oxalic acid as a catalyst for efficient synthesis of bis-(indolyl)methanes, and 14-aryl-14H-dibenzo[a,j]xanthenes in water, Chin. Chem. Lett. 19 (2008) 1186-1189.

    29. [29]

      [29] Y.L. Yang, N.N. Wan, W.P. Wang, Z.F. Xie, J.D. Wang, Synthesis of bis(indolyl) methanes catalyzed by Schiff base-Cu(Ⅱ) complex, Chin. Chem. Lett. 22 (2011) 1071-1074.

    30. [30]

      [30] E. Kolvari, M.A. Zolfigol, H. Banary, Surfactant-assisted synthesis of bis(indolyl)-methanes in water, Chin. Chem. Lett. 22 (2011) 1305-1308.

    31. [31]

      [31] A. Chatterjee, S. Manna, J. Bawrji, et al., Lewis-acid-induced electrophilic substitution in indoles with acetone. Part 2, J. Chem. Soc., Perkin Trans. 1 (1980) 553-555.

    32. [32]

      [32] (a) S.Y. Zheng, Y. Xiong, J.Y. Wang, Theoretical studies on identity SN2 reactions of lithium halide and methyl halide: a microhydration model, J. Mol. Model. 16 (2010) 1931-1937; (b) Y. Xiong, X.Q. Zhang, Significant heterogeneous carbonate salt catalyzed acetylation of alcohols via a transesterification process with carbonate saltactivated alcohol 1H NMR evidence, Chin. J. Chem. 29 (2011) 1143-1148; (c) Y. Xiong, S.T. Zhang, X.G. Ling, X. Zhang, J.Y. Wang, Theoretical investigation on identical anionic halide-exchange SN2 reaction processes on N-haloammonium cation NH3X+ (X = F, Cl, Br, and I), Int. J. Quantum Chem. 112 (2012) 2475-2481; (d) X. Zhang, Y. Xiong, S.T. Zhang, et al., Aldol condensations of aldehydes and ketones catalyzed by primary amine on water, Asian J. Chem. 24 (2012) 751-755; (e) X.G. Ling, Y. Xiong, S.T. Zhang, R.F. Huang, X.H. Zhang, Effective synthesis of benzyl halides triggered by in situ prepared hypervalent halides, Chin. Chem. Lett. 24 (2013) 45-48; (f) X.G. Ling, Y. Xiong, R.F. Huang, et al., Synthesis of benzidine derivatives via FeCl3 6H2O-promoted oxidative coupling of anilines, J. Org. Chem. 78 (2013) 5218-5226.

    33. [33]

      [33] The crystal data of compound 3j (CCDC reference number 946729): C27H20N2, M = 372.46, crystal system: monoclinic, space group: P21/c, lattice parameters: a = 10.722(6)Å, b = 15.124(6)Å, c = 15.355(9)Å, α = 90°, β = 105.159(11)°, γ = 90°, V = 2406(2)Å3, Z = 4, Dc = 1.244 g/cm-3, F000 = 952, final R indices[I > 2sigma(I)]: R1 = 0.0670, wR2 = 0.2023.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    3. [3]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    4. [4]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    8. [8]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    9. [9]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    10. [10]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    20. [20]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

Metrics
  • PDF Downloads(0)
  • Abstract views(590)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return