Citation: Hong Lin, Mei-Xian Li, Fei Liu, Dragan Mihailovič. Amplified ultraviolet detection of natural DNA based on Mo6S9-xIx nanowires[J]. Chinese Chemical Letters, ;2014, 25(4): 645-648. doi: 10.1016/j.cclet.2013.11.032 shu

Amplified ultraviolet detection of natural DNA based on Mo6S9-xIx nanowires

  • Corresponding author: Hong Lin, 
  • Received Date: 22 September 2013
    Available Online: 12 November 2013

    Fund Project: This project was supported by the National Natural Science Foundation of China (No. 20875005). (No. 20875005)

  • We demonstrate that Mo6S9-xIx nanowires (MoSI NWs) can serve as an excellent signal-intensifying nanomaterial for highly sensitive and label-free detection of DNA by ultraviolet (UV) spectrophotometry. The DNA extinction at 260 nm was greatly enhanced after addition of MoSI NWs solute, and the extinction value was linear with DNA concentration in the range of 0.0289-11.68 μg/mL with the real determination limit of 28.9 ng/mL. The association of DNA with the nanowires was characterized by transmission electronmicroscopy and circular dichroic spectroscopy. The results illustrate that the UV response amplification of DNA in the presence of MoSI NWs is attributed to the greater DNA coverage on the MoSINWsurface and the conformational transformation of DNA due to interaction of DNA with MoSI NWs. MoSI NWs are a promising nano-structured material for developing ultrasensitive sensors for detection of DNA.
  • 加载中
    1. [1]

      [1] T. Endo, K. Kerman, N. Nagatani, Y. Takamura, E. Tamiya, Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor, Anal. Chem. 77 (2005) 6976-6984.

    2. [2]

      [2] D. Pollard-Knight, E. Hawkins, D. Yeung, et al., Immunoassays and nucleic-acid detection with a biosensor based on surface-plasmon resonance, Ann. Bid. Clin. 48 (1990) 642-646.

    3. [3]

      [3] R. Karlsson, A. Michaelsson, L. Mattsson, Kinetic-analysis of monoclonal antibodyantigen interactions with a new biosensor based analytical system, J. Immunol. Methods 145 (1991) 229-240.

    4. [4]

      [4] S. Feng, Z.P. Li, S.H. Zhang, Z. Fang, Recent advance of resonance light scattering technique for the determination of nucleic acids, Spectrosc. Spect. Anal. 24 (2004) 1676-1680.

    5. [5]

      [5] L. Li, J.H. Yang, X. Wu, C.X. Sun, G.J. Zhou, Fluorimetric determination of nucleic acid using the enhancement of terium-gadolinium-nucleic acid-cetylpyridine bromide system, Talanta 59 (2003) 81-87.

    6. [6]

      [6] Y.J. Tang, Z.Y. Li, N.Y. He, et al., Preparation of functional magnetic nanoparticles mediated with PEG-4000 and application in pseudomonas aeruginosa rapid detection, J. Biomed. Nanotechnol. 9 (2013) 312-317.

    7. [7]

      [7] F. Wang, C. Ma, X. Zeng, et al., Chemiluminescence molecular detection of sequence-specific HBV-DNA using magnetic nanoparticles, J. Biomed. Nanotechnol. 8 (2012) 786-790.

    8. [8]

      [8] N. He, F. Wang, C. Ma, et al., Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples, J. Biomed. Nanotechnol. 9 (2013) 267-273.

    9. [9]

      [9] S. Li, H. Liu, Y. Jia, et al., A novel SNPs detection method based on gold magnetic nanoparticles array and single base extension, Theranostics 2 (2012) 967-975.

    10. [10]

      [10] H. Lin, H.M. Cheng, L. Liu, et al., Thionin attached to a gold electrode modified with self-assembly of Mo6S9-xIx nanowires for amplified electrochemical detection of natural DNA, Biosen. Bioelectron. 26 (2011) 1866-1870.

    11. [11]

      [11] K.Q. Deng, C.X. Li, Y.L. Ling, G.R. Xu, X.F. Li, Fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified electrode for simultaneous determination of guanine and adenine in DNA, Chin. Chem. Lett. 22 (2011) 981-984.

    12. [12]

      [12] W. Zhang, T. Yang, D.M. Huang, K. Jiao, Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film, Chin. Chem. Lett. 19 (2008) 589-591.

    13. [13]

      [13] J. Wang, Nanomaterial-based electrochemical biosensors, Analyst 130 (2005) 421-426.

    14. [14]

      [14] A. Erdem, D.O. Ariksoysal, H. Karadeniz, et al., Electrochemical genomagnetic assay for the detection of hepatitis B virus DNA in polymerase chain reaction amplicons by using disposable sensor technology, Electrochem. Commun. 7 (2005) 815-820.

    15. [15]

      [15] S.J. Park, T.A. Taton, C.A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes, Science 295 (2002) 1503-1506.

    16. [16]

      [16] A.A. Killeen, A visible spectrophotometric assay for submicrogram quantities of DNA including PCR-amplified DNA, Microchem. J. 52 (1995) 333-340.

    17. [17]

      [17] C.Z. Huang, K.A. Li, S.Y. Tong, Spectrophotometry of nucleic acids by their effect on the complex of cobalt(Ⅱ) with 4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene, Anal. Chim. Acta 345 (1997) 235-242.

    18. [18]

      [18] Y.M. Hao, H.X. Shen, Spectrophotometric determination of nucleic acids using palladium(Ⅱ) complex with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, Anal. Chim. Acta 413 (2000) 87-94.

    19. [19]

      [19] W.H. Si, Y.Q. Zi, Y.F. Tu, Spectrophotometric determination of deoxyribonucleic acid by its quenching effect on acridine orange, Spectrosc. Spect. Anal. 28 (2008) 412-414.

    20. [20]

      [20] H. Wang, W.R. Li, Y. Lu, N.N. Fu, H.S. Zhang, Spectrophotometric determination of DNA using a near infrared probe 1,10-disulfobutyl-3,3,30,30-tetramethylindotricarbocyanine, Spectrochim. Acta A 61 (2005) 2103-2107.

    21. [21]

      [21] T.J. Li, H.X. Shen, Y.J. Luo, Spectrophotometric determination of deoxyribonucleic acid labeling with ethyl violet, Chin. J. Anal. Chem. 26 (1998) 1372-1375.

    22. [22]

      [22] J.J. Storhoff, S.S. Marla, P. Bao, et al., Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system, Biosen. Bioelectron. 19 (2004) 875-883.

    23. [23]

      [23] Q.C. Zou, Q.J. Yun, G.W. Song, S.L. Zhang, L.M. Wu, Detection of DNA using cationic polyhedral oligomeric silsesquioxance nanoparticles as the probe by resonance light scattering technique, Biosens. Bioelectron. 22 (2007) 1461-1465.

    24. [24]

      [24] S. Li, H. Liu, Y. Deng, L. Lin, N. He, Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens, J. Biomed. Nanotechnol. 9 (2013) 1254-1260.

    25. [25]

      [25] D. Vrbanic, M. Remskar, A. Jesih, et al., Air-stable monodispersed Mo6S3I6 nanowires, Nanotechnology 15 (2004) 635-638.

    26. [26]

      [26] V. Nicolosi, D. Vrbanic, A. Mrzel, et al., Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study, J. Phys. Chem. B 109 (2005) 7124-7133.

    27. [27]

      [27] V. Nicolosi, D. Vrbanic, A. Mrzel, et al., Solubility of Mo6S4.5I4.5 nanowires, Chem. Phys. Lett. 401 (2005) 13-18.

    28. [28]

      [28] M. Uplaznik, B. Bercic, J. Strle, et al., Conductivity of single Mo6S9-xIx molecular nanowire bundles, Nanotechnology 17 (2006) 5142-5146.

    29. [29]

      [29] M.I. Ploscaru, S.J. Kokalj, M. Uplaznik, et al., Mo6S9-xIx nanowire recognitive molecular-scale connectivity, Nano Lett. 7 (2007) 1445-1448.

    30. [30]

      [30] D. Mihailovic, Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers, Prog. Mater. Sci. 54 (2009) 309-350.

    31. [31]

      [31] N.J. Sun, M. McMullan, P. Papakonstantinou, D. Mihailovic, M.X. Li, Amplified optical transduction of proteins derived fromMo6S9-xIx nanowires, Prog. Nat. Sci.: Mater. Int. 23 (2013) 326-330.

    32. [32]

      [32] J. Marmur, A procedure for the isolation of deoxyribonucleic acid from microorganisms, J. Mol. Biol. 3 (1961) 208-218.

    33. [33]

      [33] P. Yang, M.L. Guo, B.S. Yang, Study on the interactions between titanocene dichloride and DNA, Chin. Sci. Bull. 38 (1993) 2049-2052.

    34. [34]

      [34] Y.M. Song, P.J. Yang, L.F. Wang, M.L. Yang, J.W. Kang, Study on the interactions between Sm(RA)2 Ac 4H2O and DNA, Acta Chim. Sin. 61 (2003) 1266-1270.

    35. [35]

      [35] E.J. Gao, S.M. Zhao, Q.T. Liu, Study on the interaction of mixed ligand complex palladium(Ⅱ)-biquinoline-phenethylmalonate with DNA, Chin. J. Inorg. Chem. 20 (2004) 191-194.

    36. [36]

      [36] L.M. Chen, J. Liu, J.C. Chen, et al., Experimental and theoretical studies on the DNAbinding and spectral properties of water-soluble complex Ru(MeIm)4(dpq)]2+, J. Mol. Struct. 881 (2008) 156-166.

    37. [37]

      [37] Y.Z. Xiang, N. Wang, J. Zhang, et al., Novel cyclen-based linear polymer as a highaffinity binding material forDNA condensation, Sci. China Ser. B 52 (2009) 483-488.

    38. [38]

      [38] J. Kypr, I. Kejnovská, D. Renčiuk, M. Vorlčková, Circular dichroism and conformational polymorphism of DNA, Nucl. Acids Res. 37 (2009) 1713-1725.

    39. [39]

      [39] R. Chakraborty, S. Chatterjee, S. Sarkar, P. Chattopadhyay, Study of photoinduced interaction between calf thymus-DNA and bovine serum albumin protein with H2Ti3O7 nanotubes, J. Biomater. Nanobiotechnol. 3 (2012) 462-468.

    40. [40]

      [40] S. Wojtulewski, S.J. Grabowski, Different donors and acceptors for intramolecular hydrogen bonds, Chem. Phys. Lett. 378 (2003) 388-394.

    41. [41]

      [41] A. Soriano, R. Castillo, C. Christov, et al., Catalysis in glycine N-methyltransferase: testing electrostatic stabilization and compression hypothesis, Biochemistry 45 (2006) 14917-14925.

    42. [42]

      [42] S.B. Novakovic, B. Fraisse, G.A. Bogdanovic, A. Spasojevic-deBire, Experimental charge density evidence for the existence of high polarizability of the electron density of the free electron pairs on the sulfur atom of the thioureido group, NH-C(=S)-NH2, induced by N-H…S and C-H…S interactions, Cryst. Growth Des. 7 (2007) 191-195.

  • 加载中
    1. [1]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    2. [2]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    3. [3]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    6. [6]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    7. [7]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    8. [8]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    9. [9]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    12. [12]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    13. [13]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    14. [14]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    15. [15]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    16. [16]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    17. [17]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    18. [18]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return