Citation:
Yong-Heng Shi, Ya-Fei Xie, Yu-Qiang Liu, Qun-Chao Wei, Wei-Ren Xu, Li-Da Tang, Gui-Long Zhao. SrCl2 as an efficient cocatalyst for acidic hydrolysis of methyl glycosides[J]. Chinese Chemical Letters,
;2014, 25(4): 561-566.
doi:
10.1016/j.cclet.2013.11.028
-
SrCl2 was found to be the most efficient cocatalyst for the acidic hydrolysis of methyl glycosides after 26 kinds of most representative metal salts were screened. The SrCl2-cocatalyzed acidic hydrolysis of methyl glycosides is highlighted by short reaction times, less byproducts and high yields. A possible mechanism for the SrCl2-cocatalyzed hydrolysis is also proposed.
-
Keywords:
- Cocatalyst,
- Hydrolysis,
- Lewis acid,
- Methyl glycoside,
- Strontium chloride
-
-
-
[1]
[1] Y.H. Shi, H.Q. Xu, B.N. Liu, et al., A facile synthesis of 6-deoxydapagliflozin, Monatsh. Chem. 144 (2013) 1903-1910.
-
[2]
[2] B. Ron, S. Caryn, G. Irena, Synthesis of C-glucosides by reactions of glucosyl halides with organocuprates, J. Org. Chem. 53 (1988) 4026-4031.
-
[3]
[3] J.J. Chiara, L. Encinas, B. Diaz, A study of polymer-supported bases for the solution phase synthesis of glycosyl trichloroacetimidates, Tetrahedron Lett. 46 (2005) 2445-2448.
-
[4]
[4] K.J. Liao, X.F. Jin, X.B. Meng, et al., Synthesis of an antimetastatic tetrasaccharide β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-(1→6)-β-D-Manp-OMe, Chin. Chem. Lett. 23 (2013) 1371-1374.
-
[5]
[5] D.J. Leaver, A.B. Hughes, A. Polyzos, J.M. White, X-ray crystal structure determinations of galactosylacetylene building blocks, J. Carbohydr. Chem. 29 (2010) 379- 385.
-
[6]
[6] J. Karl, N. Ghazi, M. Goeran, 2-(Trimethylsilyl)ethyl glycosides. Transformation into glycopyranosyl chlorides, J. Org. Chem. 55 (1990) 3181-3185.
-
[7]
[7] J. Defaye, H. Driguez, B. Henrissat, et al., Stereochemistry of the hydrolysis of a,atrehalose by trehalase, determined by using a labelled substrate, Carbohydr. Res. 124 (1983) 265-274.
-
[8]
[8] L. Nathalie, M. Chris, Synthesis of L-altrose and some derivatives, Eur. J. Org. Chem. 2012 (2012) 6260-6270.
-
[9]
[9] M. Yamada, Y. Maeda, C.I. Someya, et al., Synthesis of endohedral metallofullerene glycoconjugates by carbene addition, Molecules 16 (2011) 9495-9504.
-
[10]
[10] A. Presser, O. Kunert, I. Pötschger, High-yield syntheses of tetra-O-benzyl-a-Dglucopyranosyl bromide and tetra-O-pivaloyl-α-D-glucopyranosyl bromide and their advantage in the Koenigs-Knorr reaction, Monatsh. Chem. 137 (2006) 365- 374.
-
[11]
[11] M.A. Fernández-Herrera, H. López-Muñoz, J.M. Hernández-Vázquez, et al., Synthesis and biological evaluation of the glycoside (25R)-3b,16b-diacetoxy-22- oxocholest-5-en-26-yl β-D-glucopyranoside: a selective anticancer agent in cervicouterine cell lines, Eur. J. Med. Chem. 46 (2011) 3877-3886.
-
[12]
[12] S. Koto, N. Morishima, Y. Miyata, S. Zen, Preparation of 2,3,4,6-tetra-O-benzyl-Dmannose, Bull. Chem. Soc. Jpn. 49 (1976) 2639-2640.
-
[13]
[13] D.G. Bourke, D.J. Collins, A.I. Hibberd, M.D. Mcieod, Enolic ortho esters. VI. A new ‘pyranose → cyclohexane' transformation via 1,6-dideoxy-1,1-ethylenedioxy- 2,3,4-tri-O-methyl-D-xylo-hex-5-enopyranose, Aust. J. Chem. 49 (1996) 425-434.
-
[14]
[14] A.A. Bowers, M.A. Cinelli, W.J. Wever, Visible light mediated activation and Oglycosylation of thioglycosides, Org. Lett. 15 (2013) 30-33.
-
[15]
[15] M. Matwiejuk, J. Thiem, New method for regioselective glycosylation employing saccharide oxyanions, Eur. J. Org. Chem. 2011 (2011) 5860-5878.
-
[16]
[16] I.M. Pinilla, M.B. Martinez, J.A. Galbis, Synthesis of 2,3,4,5-tetra-O-methyl-Dglucono- 1,6-lactone as a monomer for the preparation of copolyesters, Carbohydr. Res. 338 (2003) 549-556.
-
[17]
[17] R. Helleur, V.S. Rao, A.S. Perlin, Synthesis of 2,3,4,6-tetra-O-benzyl-L-idopyranose, Carbohydr. Res. 89 (1981) 83-90.
-
[18]
[18] L. Kaesbeck, H. Kessler, Convenient syntheses of 2,3,4,6-tetra-O-alkylated Dglucose and D-galactose, Liebigs Ann. 1 (997) (1997) 169-174.
-
[19]
[19] F. Charbonnier, S. Penades, A straightforward synthesis of 1-adamantylmethyl glycosides, and their binding to cyclodextrins, Eur. J. Org. Chem. 2004 (2004) 3650-3656.
-
[20]
[20] R.U. Lemieux, U. Spohr, M. Bach, et al., Chemical mapping of the active site of the glucoamylase of Aspergillus niger, Can. J. Chem. 74 (1996) 319-335.
-
[21]
[21] J.J. Verendel, T.L. Church, P.G. Anderson, Catalytic one-pot production of small organics from polysaccharides, Synthesis 2011 (2011) 1649-1677.
-
[1]
-
-
-
[1]
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
-
[2]
Liang Dong , Jingkuo Qu , Tuo Zhang , Guanghui Zhu , Ningning Ma , Chang Zhao , Yi Yuan , Xiangjiu Guan , Liejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397
-
[3]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[4]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[5]
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
-
[6]
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
-
[7]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[8]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[9]
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
-
[10]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[11]
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
-
[12]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[13]
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
-
[14]
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
-
[15]
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
-
[16]
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
-
[17]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[18]
Jing Guo , Zhi-Guo Lu , Rui-Chen Zhao , Bao-Ku Li , Xin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875
-
[19]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[20]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(616)
- HTML views(1)