Citation: Yong-Heng Shi, Ya-Fei Xie, Yu-Qiang Liu, Qun-Chao Wei, Wei-Ren Xu, Li-Da Tang, Gui-Long Zhao. SrCl2 as an efficient cocatalyst for acidic hydrolysis of methyl glycosides[J]. Chinese Chemical Letters, ;2014, 25(4): 561-566. doi: 10.1016/j.cclet.2013.11.028 shu

SrCl2 as an efficient cocatalyst for acidic hydrolysis of methyl glycosides

  • Corresponding author: Li-Da Tang,  Gui-Long Zhao, 
  • Received Date: 8 October 2013
    Available Online: 12 November 2013

    Fund Project: The authors are very grateful to the Natural Science Foundation of China (No. 21302141) (No. 21302141)

  • SrCl2 was found to be the most efficient cocatalyst for the acidic hydrolysis of methyl glycosides after 26 kinds of most representative metal salts were screened. The SrCl2-cocatalyzed acidic hydrolysis of methyl glycosides is highlighted by short reaction times, less byproducts and high yields. A possible mechanism for the SrCl2-cocatalyzed hydrolysis is also proposed.
  • 加载中
    1. [1]

      [1] Y.H. Shi, H.Q. Xu, B.N. Liu, et al., A facile synthesis of 6-deoxydapagliflozin, Monatsh. Chem. 144 (2013) 1903-1910.

    2. [2]

      [2] B. Ron, S. Caryn, G. Irena, Synthesis of C-glucosides by reactions of glucosyl halides with organocuprates, J. Org. Chem. 53 (1988) 4026-4031.

    3. [3]

      [3] J.J. Chiara, L. Encinas, B. Diaz, A study of polymer-supported bases for the solution phase synthesis of glycosyl trichloroacetimidates, Tetrahedron Lett. 46 (2005) 2445-2448.

    4. [4]

      [4] K.J. Liao, X.F. Jin, X.B. Meng, et al., Synthesis of an antimetastatic tetrasaccharide β-D-Gal-(1→4)-β-D-GlcpNAc-(1→6)-α-D-Manp-(1→6)-β-D-Manp-OMe, Chin. Chem. Lett. 23 (2013) 1371-1374.

    5. [5]

      [5] D.J. Leaver, A.B. Hughes, A. Polyzos, J.M. White, X-ray crystal structure determinations of galactosylacetylene building blocks, J. Carbohydr. Chem. 29 (2010) 379- 385.

    6. [6]

      [6] J. Karl, N. Ghazi, M. Goeran, 2-(Trimethylsilyl)ethyl glycosides. Transformation into glycopyranosyl chlorides, J. Org. Chem. 55 (1990) 3181-3185.

    7. [7]

      [7] J. Defaye, H. Driguez, B. Henrissat, et al., Stereochemistry of the hydrolysis of a,atrehalose by trehalase, determined by using a labelled substrate, Carbohydr. Res. 124 (1983) 265-274.

    8. [8]

      [8] L. Nathalie, M. Chris, Synthesis of L-altrose and some derivatives, Eur. J. Org. Chem. 2012 (2012) 6260-6270.

    9. [9]

      [9] M. Yamada, Y. Maeda, C.I. Someya, et al., Synthesis of endohedral metallofullerene glycoconjugates by carbene addition, Molecules 16 (2011) 9495-9504.

    10. [10]

      [10] A. Presser, O. Kunert, I. Pötschger, High-yield syntheses of tetra-O-benzyl-a-Dglucopyranosyl bromide and tetra-O-pivaloyl-α-D-glucopyranosyl bromide and their advantage in the Koenigs-Knorr reaction, Monatsh. Chem. 137 (2006) 365- 374.

    11. [11]

      [11] M.A. Fernández-Herrera, H. López-Muñoz, J.M. Hernández-Vázquez, et al., Synthesis and biological evaluation of the glycoside (25R)-3b,16b-diacetoxy-22- oxocholest-5-en-26-yl β-D-glucopyranoside: a selective anticancer agent in cervicouterine cell lines, Eur. J. Med. Chem. 46 (2011) 3877-3886.

    12. [12]

      [12] S. Koto, N. Morishima, Y. Miyata, S. Zen, Preparation of 2,3,4,6-tetra-O-benzyl-Dmannose, Bull. Chem. Soc. Jpn. 49 (1976) 2639-2640.

    13. [13]

      [13] D.G. Bourke, D.J. Collins, A.I. Hibberd, M.D. Mcieod, Enolic ortho esters. VI. A new ‘pyranose → cyclohexane' transformation via 1,6-dideoxy-1,1-ethylenedioxy- 2,3,4-tri-O-methyl-D-xylo-hex-5-enopyranose, Aust. J. Chem. 49 (1996) 425-434.

    14. [14]

      [14] A.A. Bowers, M.A. Cinelli, W.J. Wever, Visible light mediated activation and Oglycosylation of thioglycosides, Org. Lett. 15 (2013) 30-33.

    15. [15]

      [15] M. Matwiejuk, J. Thiem, New method for regioselective glycosylation employing saccharide oxyanions, Eur. J. Org. Chem. 2011 (2011) 5860-5878.

    16. [16]

      [16] I.M. Pinilla, M.B. Martinez, J.A. Galbis, Synthesis of 2,3,4,5-tetra-O-methyl-Dglucono- 1,6-lactone as a monomer for the preparation of copolyesters, Carbohydr. Res. 338 (2003) 549-556.

    17. [17]

      [17] R. Helleur, V.S. Rao, A.S. Perlin, Synthesis of 2,3,4,6-tetra-O-benzyl-L-idopyranose, Carbohydr. Res. 89 (1981) 83-90.

    18. [18]

      [18] L. Kaesbeck, H. Kessler, Convenient syntheses of 2,3,4,6-tetra-O-alkylated Dglucose and D-galactose, Liebigs Ann. 1 (997) (1997) 169-174.

    19. [19]

      [19] F. Charbonnier, S. Penades, A straightforward synthesis of 1-adamantylmethyl glycosides, and their binding to cyclodextrins, Eur. J. Org. Chem. 2004 (2004) 3650-3656.

    20. [20]

      [20] R.U. Lemieux, U. Spohr, M. Bach, et al., Chemical mapping of the active site of the glucoamylase of Aspergillus niger, Can. J. Chem. 74 (1996) 319-335.

    21. [21]

      [21] J.J. Verendel, T.L. Church, P.G. Anderson, Catalytic one-pot production of small organics from polysaccharides, Synthesis 2011 (2011) 1649-1677.

  • 加载中
    1. [1]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    2. [2]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    3. [3]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    4. [4]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    5. [5]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    6. [6]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    7. [7]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    8. [8]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    9. [9]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    12. [12]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    13. [13]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    14. [14]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    15. [15]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    16. [16]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return