Citation: Deyun Ma, Fenglan Liang, Qingquan Xue, Yanping Liu, Chunqiang Zhuang, Shijie Li. Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100190. doi: 10.1016/j.actphy.2025.100190 shu

Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal

  • Corresponding author: Qingquan Xue, qingquanxue@zjsru.edu.cn Chunqiang Zhuang, chunqiang.zhuang@bjut.edu.cn Shijie Li, lishijie@zjou.edu.cn
  • Received Date: 10 August 2025
    Revised Date: 19 September 2025
    Accepted Date: 19 September 2025

    Fund Project: the Natural Science Foundation of Zhejiang Province LY20E080014the National Natural Science Foundation of China 51708504the Open Cooperation Foundation of the Department of Chemical Science of Henan University DCSHENU2413

  • The construction of S-scheme heterojunction photocatalysts has emerged as a promising strategy to address the urgent need for efficient antibiotic wastewater remediation. However, persistent challenges in achieving interfacial intimacy and precise charge transfer regulation between semiconductors have hindered their practical implementation. In this work, we engineered a hierarchical Cd0.5Zn0.5S/BiOBr S-scheme heterojunction via a controlled solvothermal synthesis, where BiOBr microspheres serve as the core, and Cd0.5Zn0.5S nanoparticles form a conformal shell. This architecture ensures maximal interfacial contact and directional charge dynamics, critical for optimizing photocatalytic efficiency. The optimized heterojunction exhibits superior catalytic performance, achieving tetracycline (TC) degradation rate constants 3.3- and 1.6-fold greater than pristine BiOBr and Cd0.5Zn0.5S, respectively. This enhancement stems from the synergistic interplay of efficient charge separation and preserved redox capacities inherent to the S-scheme mechanism. Furthermore, the TC degradation process and mechanism were elucidated. This study provides a new perspective on developing defective S-scheme heterojunctions for antibiotic wastewater purification with high performance.
  • 加载中
    1. [1]

      E. Y. Klein, I. Impalli, S. Poleon, P. Denoel, M. Cipriano, T. P. V. Boeckel, S. Pecetta, D. E. Bloom, A. Nandi, Proc. Nat. Acad. Sci. 121 (2024) e2411919121, https://doi.org/10.1073/pnas.2411919121.  doi: 10.1073/pnas.2411919121

    2. [2]

      P. Loffler, B. I. Escher, C. Baduel, M. P. Virta, F. Y. Lai, Environ. Sci. Technol. 57 (2023) 9474, https://doi.org/10.1021/acs.est.2c09854.  doi: 10.1021/acs.est.2c09854

    3. [3]

      L. Maier, C. V. Goemans, J. Wirbel, M. Kuhn, C. Eberl, M. Pruteanu, P. Müller, S. Garcia-Santamarina, E. Cacace, B. Zhang, et al., Nature 599 (2021) 120, https://doi.org/10.1038/s41586-021-03986-2.  doi: 10.1038/s41586-021-03986-2

    4. [4]

      H. Sun, Y. Liu, C. Wu, L. Q. Ma, D. Guan, H. Hong, H. Yu, H. Lin, X. Huang, P. Gao, Eco-Environ. Health 3 (2024) 183, https://doi.org/10.1016/j.eehl.2024.02.004.  doi: 10.1016/j.eehl.2024.02.004

    5. [5]

      C. Ren, R. Bai, W. Chen, J. Li, X. Zhou, X. Tian, F. Zhao, Chem. Res. Chin. Univ. 39 (2023) 389, https://doi.org/10.1007/s40242-023-3053-x.  doi: 10.1007/s40242-023-3053-x

    6. [6]

      Y. Liu, H. Lu, T. Yang, P. Cheng, X. Han, W. Liang, Chin. Chem. Lett. 35 (2024) 109492, https://doi.org/10.1016/j.cclet.2024.109492.  doi: 10.1016/j.cclet.2024.109492

    7. [7]

      S. Wu, J. Peng, S. L. J. Lee, X. Niu, Y. Jiang, S. Lin, Eco-Environ. Health 3 (2024) 494, https://doi.org/10.1016/j.eehl.2024.06.001.  doi: 10.1016/j.eehl.2024.06.001

    8. [8]

      J. Zhang, X. Tang, Y. Hong, G. Chen, Y. Chen, L. Zhang, W. Gao, Y. Zhou, B. Sun, Eco-Environ. Health 2 (2023) 47, https://doi.org/10.1016/j.eehl.2023.04.002.  doi: 10.1016/j.eehl.2023.04.002

    9. [9]

      Y. Yu, Y. Yu, H. Wu, J. Shi, H. Morikawa, C. Zhu, Adv. Fiber Mater. 6 (2024) 1495, https://doi.org/10.1007/s42765-024-00430-8.  doi: 10.1007/s42765-024-00430-8

    10. [10]

      Y. -X. Huang, L. -Q. Yu, K. -Y. Chen, H. Wang, S. -Y. Zhao, B. -C. Huang, R. -C. Jin, Chin. Chem. Lett. 35 (2024) 109437, https://doi.org/10.1016/j.cclet.2023.109437.  doi: 10.1016/j.cclet.2023.109437

    11. [11]

      Z. Zhang, M. Kang, J. Zhou, J. Liaocheng Univ. Nat. Sci. Ed. 38 (2025) 362, 10.19728/j.issn1672-6634.2024070018.

    12. [12]

      W. Zeng, Y. Dong, X. Ye, Z. Zhang, T. Zhang, X. Guan, L. Guo, Chin. Chem. Lett. 35 (2024) 109252, https://doi.org/10.1016/j.cclet.2023.109252.  doi: 10.1016/j.cclet.2023.109252

    13. [13]

      X. Hu, X. Yang, B. Song, Z. Zhan, R. Sun, Y. Guo, L. -M. Yang, X. Yang, C. Zhang, I. Hussain, X. Wang, B. Tan, SusMat 4 (2024) e220, https://doi.org/10.1002/sus2.220.  doi: 10.1002/sus2.220

    14. [14]

      R. Hailili, Y. Gan, ACS Appl. Mater. Interfaces 17 (2025) 39809, https://doi.org/10.1021/acsami.5c06606.  doi: 10.1021/acsami.5c06606

    15. [15]

      J. O. Ighalo, M. Smith, A. A. Mayyahi, P. B. Amama, Appl. Catal. B 358 (2024) 124352, https://doi.org/10.1016/j.apcatb.2024.124352.  doi: 10.1016/j.apcatb.2024.124352

    16. [16]

      J. Ran, A. Talebian-Kiakalaieh, S. -Z. Qiao, Adv. Energy Mater. 14 (2024) 2400650, https://doi.org/10.1002/aenm.202400650.  doi: 10.1002/aenm.202400650

    17. [17]

      Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N. Waterhouse, T. Zhang, Adv. Energy Mater. 10 (2020) 2002199, https://doi.org/10.1002/aenm.202002199.  doi: 10.1002/aenm.202002199

    18. [18]

      Y. Kang, Z. -X. Low, D. Zou, Z. Zhong, W. Xing, Adv. Fiber Mater. 6 (2024) 1306, https://doi.org/10.1007/s42765-024-00427-3.  doi: 10.1007/s42765-024-00427-3

    19. [19]

      Z. Chen, M. Pan, C. Cheng, J. Luo, X. Deng, SusMat 4 (2024) e232, https://doi.org/10.1002/sus2.232.  doi: 10.1002/sus2.232

    20. [20]

      Q. Xiao, T. Liu, Q. Zhou, L. Li, D. Gao, D. Li, F. You, C. Chang, Chem. Res. Chin. Univ. 40 (2024) 484, https://doi.org/10.1007/s40242-024-4022-8.  doi: 10.1007/s40242-024-4022-8

    21. [21]

      C. Zhang, Z. Wu, J. Shen, L. He, W. Sun, Acta Phys. Chim. Sin. 40 (2024) 2304004, https://doi.org/10.3866/PKU.WHXB202304004.  doi: 10.3866/PKU.WHXB202304004

    22. [22]

      G. -H. Han, S. -H. Lee, S. -Y. Hwang, K. -Y. Lee, Adv. Energy Mater. 11 (2021) 2003121, https://doi.org/10.1002/aenm.202003121.  doi: 10.1002/aenm.202003121

    23. [23]

      X. Yang, Z. Guo, Y. Xu, Z. Li, Y. Zhou, Z. Yang, Z. Zhou, Y. Gao, J. Zhang, Chem. Res. Chin. Univ. 40 (2024) 536-547, https://doi.org/10.1007/s40242-024-4076-7.  doi: 10.1007/s40242-024-4076-7

    24. [24]

      C. Fu, D. Li, J. Zhang, W. Guo, H. Yang, B. Zhao, Z. Chen, X. Fu, Z. Liang, L. Jiang, Chem. Res. Chin. Univ. 39 (2023) 891, https://doi.org/10.1007/s40242-023-3182-2.  doi: 10.1007/s40242-023-3182-2

    25. [25]

      Y. Fan, Y. Wang, H. Wang, Y. Chen, Z. Li, Chem. Res. Chin. Univ. 40 (2024) 1141-1150, https://doi.org/10.1007/s40242-024-4044-2.  doi: 10.1007/s40242-024-4044-2

    26. [26]

      Z. Wang, Z. Sun, H. Yin, H. Wei, Z. Peng, Y. X. Pang, G. Jia, H. Zhao, C. H. Pang, Z. Yin, eScience 3 (2023) 100136, https://doi.org/10.1016/j.esci.2023.100136.  doi: 10.1016/j.esci.2023.100136

    27. [27]

      S. Thakur, A. Ojha, S. K. Kansal, N. K. Gupta, H. C. Swart, J. Cho, A. Kuznetsov, S. Sun, J. Prakash, Adv. Powder Mater. 3 (2024) 100233, https://doi.org/10.1016/j.apmate.2024.100233.  doi: 10.1016/j.apmate.2024.100233

    28. [28]

      Y. Yang, L. Guo, X. Wang, Z. Li, W. Zhou, Adv. Powder Mater. 3 (2024) 100178, https://doi.org/10.1016/j.apmate.2024.100178.  doi: 10.1016/j.apmate.2024.100178

    29. [29]

      X. Chen, Y. Wu, Y. Tang, P. Li, S. Gao, Q. Wang, W. Liu, S. Zhan, Chin. Chem. Lett. 35 (2024) 109245, https://doi.org/10.1016/j.cclet.2023.109245.  doi: 10.1016/j.cclet.2023.109245

    30. [30]

      Y. Qin, X. Zhang, B. Ge, T. Zhang, G. Ren, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 49, https://doi.org/10.19728/j.issn1672-6634.2024080006.  doi: 10.19728/j.issn1672-6634.2024080006

    31. [31]

      W. A. Zoubi, A. A. Mahmud, F. Hazmatulhaq, M. R. Thalji, S. Leoni, J. -H. Kang, Y. G. Ko, SusMat 4 (2024) e216, https://doi.org/10.1002/sus2.216.  doi: 10.1002/sus2.216

    32. [32]

      S. -M. Wu, P. Schmuki, Adv. Mater. 37 (2025) 2414889, https://doi.org/10.1002/adma.202414889.  doi: 10.1002/adma.202414889

    33. [33]

      S. Yang, L. Lu, J. Li, Q. Cheng, B. Mei, X. Li, J. Mao, P. Qiao, F. Sun, J. Ma, Q. Xu, Z. Jiang, SusMat 3 (2023) 379, https://doi.org/10.1002/sus2.125.  doi: 10.1002/sus2.125

    34. [34]

      K. Song, H. Liu, B. Chen, C. Gong, J. Ding, T. Wang, E. Liu, L. Ma, N. Zhao, F. He, Chem. Rev. 124 (2024) 13660, https://doi.org/10.1021/acs.chemrev.4c00382.  doi: 10.1021/acs.chemrev.4c00382

    35. [35]

      T. Bak, S. Sherif, D. S. Black, J. Nowotny, Chem. Rev. 124 (2024) 11848, https://doi.org/10.1021/acs.chemrev.4c00185.  doi: 10.1021/acs.chemrev.4c00185

    36. [36]

      E. Pastor, M. Sachs, S. Selim, J. R. Durrant, A. Bakulin, A. Walsh, Nat. Rev. Mater. 7 (2022) 503, https://doi.org/10.1038/s41578-022-00433-0.  doi: 10.1038/s41578-022-00433-0

    37. [37]

      S. Li, K. Dong, M. Cai, X. Li, X. Chen, eScience 4 (2024) 100208, https://doi.org/ 10.1016/j.esci.2023.100208.  doi: 10.1016/j.esci.2023.100208

    38. [38]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.  doi: 10.3866/PKU.WHXB202407014

    39. [39]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    40. [40]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    41. [41]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183.  doi: 10.1016/j.apmate.2024.100183

    42. [42]

      S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Adv. Powder Mater. 2 (2023) 100073, https://doi.org/10.1016/j.apmate.2022.100073.  doi: 10.1016/j.apmate.2022.100073

    43. [43]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    44. [44]

      K. Khan, X. Tao, M. Shi, B. Zeng, Z. Feng, C. Li, R. Li, Adv. Func. Mater. 30 (2020) 2003731, https://doi.org/10.1002/adfm.202003731.  doi: 10.1002/adfm.202003731

    45. [45]

      Y. -H. Chew, B. -J. Ng, J. -Y. Tang, L. -L. Tan, S. -P. Chai, Solar RRL 5 (2021) 2100016, https://doi.org/10.1002/solr.202100016.  doi: 10.1002/solr.202100016

    46. [46]

      J. Yu, P. Su, D. Zhang, H. Zhao, Y. Nan, T. Liang, D. Zhang, X. Pu, Sep. Purif. Technol. 354 (2025) 128694, https://doi.org/10.1016/j.seppur.2024.128694.  doi: 10.1016/j.seppur.2024.128694

    47. [47]

      Z. Xu, Y. Wu, R. Tao, Z. Jin, X. Fang, Chem. Res. Chin. Univ. 39 (2023) 928, https://doi.org/10.1007/s40242-022-2274-8.  doi: 10.1007/s40242-022-2274-8

    48. [48]

      P. Su, J. Yu, P. Deng, D. Qu, T. Liang, H. Zhao, N. Yang, D. Zhang, B. Ge, X. Pu, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012.  doi: 10.19728/j.issn1672-6634.2024010012

    49. [49]

      E. Zhou, N. Sun, Y. Jiang, Q. Wang, Y. Xiao, Y. Liu, W. Zhang, H. Xu, Z. Liu, Appl. Surf. Sci. 580 (2022) 152286, https://doi.org/10.1016/j.apsusc.2021.152286.  doi: 10.1016/j.apsusc.2021.152286

    50. [50]

      J. Tao, M. Wang, G. Liu, Q. Liu, L. Lu, N. Wan, H. Tang, G. Qiao, J. Adv. Ceram. 11 (2022) 1117, https://doi.org/10.1007/s40145-022-0598-y.  doi: 10.1007/s40145-022-0598-y

    51. [51]

      F. Wang, J. Li, X. Yu, H. Tang, J. Xu, L. Sun, Q. Liu, J. Mater. Sci. Technol. 146 (2023) 49, https://doi.org/10.1016/j.jmst.2022.10.040.  doi: 10.1016/j.jmst.2022.10.040

    52. [52]

      V. Dutta, A. Sudhaik, P. Raizada, A. Singh, T. Ahamad, S. Thakur, Q. V. Le, V. -H. Nguyen, P. Singh, J. Mater. Sci. Technol. 162 (2024) 11, https://doi.org/10.1016/j.jmst.2023.03.037.  doi: 10.1016/j.jmst.2023.03.037

    53. [53]

      M. Gao, Z. Sun, Y. Gao, G. Yu, Y. Feng, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 39, doi:10.19728/j.issn1672-6634.2024060002.  doi: 10.19728/j.issn1672-6634.2024060002

    54. [54]

      X. Sun, L. Li, S. Jin, W. Shao, H. Wang, X. Zhang, Y. Xie, eScience 3 (2023) 100095, https://doi.org/10.1016/j.esci.2023.100095.  doi: 10.1016/j.esci.2023.100095

    55. [55]

      Y. Wang, Y. Pan, H. Zhu, Y. Xiang, R. Han, R. Huang, C. Du, C. Pan, Acta Phys. Chim. Sin. 40 (2024) 2304050, https://doi.org/10.3866/PKU.WHXB202304050.  doi: 10.3866/PKU.WHXB202304050

    56. [56]

      Y. Liu, S. Zhao, J. Zhong, J. Liu, B. Chen, Y. Liao, L. Yao, Z. Chen, B. Han, Z. Wu, Sci. China Mater. 67 (2024) 3609, https://doi.org/10.1007/s40843-024-3069-1.  doi: 10.1007/s40843-024-3069-1

    57. [57]

      T. F. Ma, Z. H. Jiao, H. R. Qiu, F. Wang, Y. Liu, L. J. Guo, eScience 4 (2024) 100246, https://doi.org/10.1016/j.esci.2024.100246.  doi: 10.1016/j.esci.2024.100246

    58. [58]

      C. Wang, C. You, K. Rong, C. Shen, Y. Fang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.  doi: 10.3866/PKU.WHXB202307045

    59. [59]

      R. Zhu, L. Kang, L. Li, X. Pan, H. Wang, Y. Su, G. Li, H. Cheng, R. Li, X. Y. Liu, A. Wang, Acta Phys. Chim. Sin. 40 (2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003.  doi: 10.3866/PKU.WHXB202303003

    60. [60]

      Y. Zhao, Y. Zhang, Q. Xu, H. Gong, M. Yan, K. Feng, X. Zhou, X. Zhou, D. Zhang, J. Mater. Chem. A 12 (2024) 1753, https://doi.org/10.1039/D3TA06341K.  doi: 10.1039/D3TA06341K

    61. [61]

      S. Feng, S. Fan, L. Li, Z. Sun, H. Tang, Y. Xu, L. Fang, C. Wang, Nano Res. Energy 3 (2024) e9120117, https://doi.org/10.26599/NRE.2024.9120117.  doi: 10.26599/NRE.2024.9120117

    62. [62]

      A. Actis, M. Melchionna, G. Filippini, P. Fornasiero, M. Prato, E. Salvadori, M. Chiesa, Angew. Chem. Int. Ed. 61 (2022) e202210640, https://doi.org/10.1002/anie.202210640.  doi: 10.1002/anie.202210640

    63. [63]

      X. He, J. Wu, K. Li, M. Liu, H. Shi, J. Du, C. Song, X. Wang, X. Guo, Sci. China Mater. 66 (2023) 3155, https://doi.org/10.1007/s40843-023-2440-6.  doi: 10.1007/s40843-023-2440-6

    64. [64]

      P. Su, S. Wang, D. Zhang, T. Liang, H. Zhao, N. Yang, D. Zhang, P. Cai, X. Pu, J. Colloid Interface Sci. 680 (2025) 529, https://doi.org/10.1016/j.jcis.2024.11.120  doi: 10.1016/j.jcis.2024.11.120

    65. [65]

      Z. Kong, D. Zhang, J. Liu, X. -Y. Ji, P. Cai, X. Pu, H. Zhang, Nano Energy 138 (2025) 110890, https://doi.org/10.1016/j.nanoen.2025.110890  doi: 10.1016/j.nanoen.2025.110890

    66. [66]

      J. Liu, X. Li, C. Han, M. Liu, X. Li, J. Sun, C. Shao, Energy Environ. Mater. 6 (2023) e12404, https://doi.org/10.1002/eem2.12404.  doi: 10.1002/eem2.12404

    67. [67]

      Y. Dong, P. Ji, X. Xu, R. Li, Y. Wang, K. P. Homewood, X. Xia, Y. Gao, X. Chen, Energy Environ. Mater. 7 (2024) e12643, https://doi.org/10.1002/eem2.12643.  doi: 10.1002/eem2.12643

    68. [68]

      T. Huang, Z. Huang, X. Yang, S. Yang, Q. Gao, X. Cai, Y. Liu, Y. Fang, S. Zhang, S. Zhang, Adv. Powder Mater. 3 (2024) 100242, https://doi.org/10.1016/j.apmate.2024.100242.  doi: 10.1016/j.apmate.2024.100242

    69. [69]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    70. [70]

      G. A. B. Azizar, J. Hong, J. Mater. Sci. Technol. 168 (2024) 103, https://doi.org/10.1016/j.jmst.2023.05.035.  doi: 10.1016/j.jmst.2023.05.035

    71. [71]

      J. Niu, L. Wang, X. Meng, C. Li, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 36, https://doi.org/10.19728/j.issn1672-6634.2023050002  doi: 10.19728/j.issn1672-6634.2023050002

    72. [72]

      W. Li, J. -J. Li, Z. -F. Liu, H. -Y. Ma, P. -F. Fang, R. Xiong, J. -H. Wei, Rare Met. 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5.  doi: 10.1007/s12598-023-02419-5

    73. [73]

      R. Zhang, X. Yao, X. Meng, X. Li, D. Zhang, J. Liu, P. Cai, X. Pu, Sep. Purif. Technol. 354 (2025) 129479, https://doi.org/10.1016/j.seppur.2024.129479.  doi: 10.1016/j.seppur.2024.129479

    74. [74]

      R. Zhang, R. Liu, Z. Ding, J. Ma, T. Wang, D. Zhang, J. Liu, P. Cai, X. Pu, J. Colloid Interface Sci. 682 (2025) 568, https://doi.org/10.1016/j.jcis.2024.11.245.  doi: 10.1016/j.jcis.2024.11.245

    75. [75]

      S. Li, M. Cai, C. Wang, Y. Liu, Adv. Fiber Mater. 5 (2023) 994, https://doi.org/10.1007/s42765-022-00253-5.  doi: 10.1007/s42765-022-00253-5

    76. [76]

      Yi Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    77. [77]

      S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J. Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1.  doi: 10.1016/S1872-2067(23)64479-1

    78. [78]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3.  doi: 10.1016/S1872-2067(22)64201-3

    79. [79]

      J. Zhang, L. Li, M. Du, Y. Cui, Y. Li, W. Yan, H. Huang, X. a. Li, X. Zhu, Small 19 (2023) 2300402, https://doi.org/10.1002/smll.202300402.  doi: 10.1002/smll.202300402

    80. [80]

      J. Chen, P. Bai, S. Yuan, Y. He, Z. Niu, Y. Zhao, Y. Li, Chin. J. Catal. 67 (2024) 124, https://doi.org/10.1016/S1872-2067(24)60149-X.  doi: 10.1016/S1872-2067(24)60149-X

    81. [81]

      S. Zhang, P. Du, X. Lu, Sci. China Mater. 67 (2024) 1379, https://doi.org/10.1007/s40843-023-2819-8.  doi: 10.1007/s40843-023-2819-8

    82. [82]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    83. [83]

      H. -Y. Chen, H. -L. Zhu, P. -Q. Liao, X. -M. Chen, Acta Phys. Chim. Sin. 40 (2024) 2306046, https://doi.org/10.3866/PKU.WHXB202306046.  doi: 10.3866/PKU.WHXB202306046

    84. [84]

      S. Shaheen, S. Xu, J. Bian, A. Zada, Z. -Q. Zhang, Y. Qu, L. -Q. Jing, Rare Met. 43 (2024) 1580, https://doi.org/10.1007/s12598-023-02585-6.  doi: 10.1007/s12598-023-02585-6

    85. [85]

      Y. Li, H. Yang, J. Li, Y. Li, W. Ren, J. Wen, Q. Xiao, J. Xu, Sci. China Mater. 67 (2024) 2142, https://doi.org/10.1007/s40843-024-2852-9.  doi: 10.1007/s40843-024-2852-9

    86. [86]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.  doi: 10.3866/PKU.WHXB202407012

    87. [87]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    88. [88]

      H. Wu, D. Han, B. Hu, J. Liang, X. Tang, Z. Zhu, P. Huo, J. Environ. Chem. Eng. 13 (2025) 116121, https://doi.org/10.1016/j.jece.2025.116121.  doi: 10.1016/j.jece.2025.116121

    89. [89]

      Z. Zhu, X. Xing, Q. Qi, H. Li, D. Han, X. Song, X. Tang, Y. H. Ng, P. Huo, Fuel 388 (2025) 134509, https://doi.org/10.1016/j.fuel.2025.134509.  doi: 10.1016/j.fuel.2025.134509

    90. [90]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv Mater 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    91. [91]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/ 10.1002/adma.202107668.  doi: 10.1002/adma.202107668

    92. [92]

      X. Kang, G. Dong, T. Dong, ACS Appl. Energy Mater. 6 (2022) 1025, https://doi.org/10.1021/acsaem.2c03535.  doi: 10.1021/acsaem.2c03535

  • 加载中
    1. [1]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    3. [3]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    4. [4]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    14. [14]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    15. [15]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    20. [20]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(5)
  • Abstract views(83)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return