Citation: Jingjing Liu, Aoqi Wei, Hao Zhang, Shuwang Duo. SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100185. doi: 10.1016/j.actphy.2025.100185 shu

SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications

  • Corresponding author: Jingjing Liu, liujingjing1125@163.com Shuwang Duo, dsw@jxstnu.edu.cn
  • Received Date: 10 August 2025
    Revised Date: 6 September 2025
    Accepted Date: 8 September 2025

    Fund Project: National Natural Science Foundation of China 22368022Natural Science Foundation of Jiangxi Province 20242BAB20087the Scientific Research Foundation for PhD of Jiangxi Science and Technology Normal University 2022BSQD01

  • Recent advances in tin disulfide (SnS2)-based heterojunctions have demonstrated their great potential for photocatalysis and sensing applications, owing to their optimal bandgap (2.0–2.3 eV), remarkable stability, environmental compatibility, and outstanding surface reactivity. Despite these advantages, a comprehensive review systematically addressing this emerging field remains lacking. This review first outlines the state-of-the-art synthesis strategies for SnS2 heterostructures. It then critically evaluates their photocatalytic performance in key applications, including hydrogen evolution, environmental remediation, and hydrogen peroxide production. The gas-sensing capabilities are subsequently analyzed, with special emphasis on nitrogen dioxide and ammonia detection. Mechanistic studies reveal that the enhanced performance originates from tailored heterojunction designs: S-scheme configurations significantly boost charge separation in photocatalysis; n-n/p-n junctions optimize active site distribution and gas adsorption in sensing applications. The interfacial synergy between SnS2 and coupled semiconductors is identified as the key factor governing performance improvements. Finally, some conclusions and perspectives as well as future challenges are presented.
  • 加载中
    1. [1]

      X. Guo, F. Zhang, Y. Zhang, J. Hu, J. Mater. Chem. A 11 (2023) 7331, https://doi.org/10.1039/d2ta09741a.  doi: 10.1039/d2ta09741a

    2. [2]

      M. Xiao, D. Qi, H. Sun, Y. Meng, F. Zhu, Inorg. Chem. Front. 11 (2024) 4107, https://doi.org/10.1039/d4qi00688g.  doi: 10.1039/d4qi00688g

    3. [3]

      A. Taufik, R. Saleh, G. Seong, Nanoscale 16 (2024) 9680, https://doi.org/10.1039/d4nr00706a.  doi: 10.1039/d4nr00706a

    4. [4]

      D. Sun, W. Wang, Y. Fan, Y. Chen, S. Ruan, J. Alloy. Compd. 1014 (2025) 178738, https://doi.org/10.1016/j.jallcom.2025.178738.  doi: 10.1016/j.jallcom.2025.178738

    5. [5]

      P. Haghighi, F. Haghighat, Build. Environ. 249 (2024) 111108, https://doi.org/10.1016/j.buildenv.2023.111108.  doi: 10.1016/j.buildenv.2023.111108

    6. [6]

      Y. Le, H. Wang, Bioresour. Technol. 426 (2025) 132379, https://doi.org/10.1016/j.biortech.2025.132379.  doi: 10.1016/j.biortech.2025.132379

    7. [7]

      D. Zhang, X. Zong, Z. Wu, Sens. Actuators B Chem. 287 (2019) 398, https://doi.org/10.1016/j.snb.2019.01.123.  doi: 10.1016/j.snb.2019.01.123

    8. [8]

      Y. Peng, M. Zhang, W. Zhao, Y. Lin, Z. Jiang, A. Du, J. Phys. Chem. Lett. 15 (2024) 2740, https://doi.org/10.1021/acs.jpclett.4c00200.  doi: 10.1021/acs.jpclett.4c00200

    9. [9]

      R. K. Rai, N. Goyal, D. Sharma, R. Ram, K. Jagadish, N. Bhat, N. Ravishankar, Chem. Mater. 37 (2025) 441, https://doi.org/10.1021/acs.chemmater.4c02821.  doi: 10.1021/acs.chemmater.4c02821

    10. [10]

      A. Mohanty, K. Kamali, ACS Appl. Nano Mater. 7 (2024) 3326, https://doi.org/10.1021/acsanm.3c05750.  doi: 10.1021/acsanm.3c05750

    11. [11]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668.  doi: 10.1002/adma.202107668

    12. [12]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    13. [13]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    14. [14]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    15. [15]

      X. Gao, Y. Liu, M. Yuan, Y. Qu, Y. Tan, F. Chen, Appl. Surf. Sci. 606 (2022) 155007, https://doi.org/10.1016/j.apsusc.2022.155007.  doi: 10.1016/j.apsusc.2022.155007

    16. [16]

      R. Wu, T. Xin, Y. Wang, T. Wang, L. Liu, J. Hao, J. Mater. Chem. A 10 (2022) 14810, https://doi.org/10.1039/d2ta03333j.  doi: 10.1039/d2ta03333j

    17. [17]

      T. Wang, Y. Wang, W. Fan, R. Wu, Q. Liang, J. Hao, J. Hazard. Mater. 434 (2022) 128782, https://doi.org/10.1016/j.jhazmat.2022.128782.  doi: 10.1016/j.jhazmat.2022.128782

    18. [18]

      M. Shafiei, J. Bradford, H. Khan, C. Piloto, W. Wlodarski, Y. Li, N. Motta, Appl. Surf. Sci. 462 (2018) 330, https://doi.org/10.1016/j.apsusc.2018.08.115.  doi: 10.1016/j.apsusc.2018.08.115

    19. [19]

      Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang, Y. Yang, L. Xie, D. Chen, Y. Long, J. Chen, et al., ACS Nano 10 (2016) 755, https://doi.org/10.1021/acsnano.5b05823.  doi: 10.1021/acsnano.5b05823

    20. [20]

      S. Kim, J. H. Bang, M. S. Choi, W. Oum, A. Mirzaei, N. Lee, H. -C. Kwon, D. Lee, H. Jeon, S. S. Kim, et al., Met. Mater. Int. 25 (2018) 805, https://doi.org/10.1007/s12540-018-00219-6.  doi: 10.1007/s12540-018-00219-6

    21. [21]

      J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, W. Zheng, CrystEngComm 14 (2012) 832, https://doi.org/10.1039/c1ce05831b.  doi: 10.1039/c1ce05831b

    22. [22]

      P. Bharathi, S. Harish, M. Shimomura, M. K. Mohan, J. Archana, M. Navaneethan, Chemosphere 346 (2024) 140486, https://doi.org/10.1016/j.chemosphere.2023.140486.  doi: 10.1016/j.chemosphere.2023.140486

    23. [23]

      H. Zhao, J. Lv, X. Ma, B. Huang, L. Han, X. Kang, D. Wang, H. Fang, Sens. Actuator B Chem. 429 (2025) 137318, https://doi.org/10.1016/j.snb.2025.137318.  doi: 10.1016/j.snb.2025.137318

    24. [24]

      L. Zhang, J. Xu, X. Lei, H. Sun, T. Ai, F. Ma, P. K. Chu, Sens. Actuator B Chem. 433 (2025) 137565, https://doi.org/10.1016/j.snb.2025.137565.  doi: 10.1016/j.snb.2025.137565

    25. [25]

      D. Xu, W. Jia, X. Duan, T. Yu, H. Chen, Y. Ma, J. He, J. Wang, R. Yan, W. Zhao, Ceram. Int. 51 (2025) 3568, https://doi.org/10.1016/j.ceramint.2024.11.333.  doi: 10.1016/j.ceramint.2024.11.333

    26. [26]

      J. Guo, C. Wang, X. Chang, W. Zheng, J. Zhang, X. Liu, ACS Appl. Electron. Mater. 7 (2025) 3552, https://doi.org/10.1021/acsaelm.5c00285.  doi: 10.1021/acsaelm.5c00285

    27. [27]

      W. Jia, D. Xu, X. Duan, R. Li, B. Sun, R. Yan, W. Zhao, Ceram. Int. 50 (2024) 25832, https://doi.org/10.1016/j.ceramint.2024.04.320.  doi: 10.1016/j.ceramint.2024.04.320

    28. [28]

      X. Xu, S. Dong, J. Lv, G. Huang, Q. Chen, J. Bi, Appl. Surf. Sci. 689 (2025) 162489, https://doi.org/10.1016/j.apsusc.2025.162489.  doi: 10.1016/j.apsusc.2025.162489

    29. [29]

      Z. Lei, W. Wang, T. Sun, E. Liu, T. Gao, J. Mater. Sci. Technol. 216 (2025) 81, https://doi.org/10.1016/j.jmst.2024.07.034.  doi: 10.1016/j.jmst.2024.07.034

    30. [30]

      S. Leonardi, W. Wlodarski, Y. Li, N. Donato, A. Bonavita, G. Neri, J. Alloy. Compd. 781 (2019) 440, https://doi.org/10.1016/j.jallcom.2018.12.110.  doi: 10.1016/j.jallcom.2018.12.110

    31. [31]

      D. Gu, X. Li, Y. Zhao, J. Wang, Sens. Actuator B Chem. 244 (2017) 67, https://doi.org/10.1016/j.snb.2016.12.125.  doi: 10.1016/j.snb.2016.12.125

    32. [32]

      X. Jiang, Y. Zhen, Y. Feng, Z. Yang, Z. Qin, J. Alloy. Compd. 938 (2023) 168520, https://doi.org/10.1016/j.jallcom.2022.168520.  doi: 10.1016/j.jallcom.2022.168520

    33. [33]

      M. Li, X. Gao, Y. Zhang, Y. Zheng, Z. Lin, G. Wei, IEEE Sens. J. 22 (2022) 23456, https://doi.org/10.1109/jsen.2022.3215156.  doi: 10.1109/jsen.2022.3215156

    34. [34]

      K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, ACS Appl. Mater. Inter. 7 (2015) 11359, https://doi.org/10.1021/acsami.5b01856.  doi: 10.1021/acsami.5b01856

    35. [35]

      Y. Qin, S. Chen, Y. Bai, ACS Appl. Electron. Mater. 4 (2022) 158, https://doi.org/10.1021/acsaelm.1c00911.  doi: 10.1021/acsaelm.1c00911

    36. [36]

      A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, App. Catal. B Environ. 289 (2021) 120039, https://doi.org/10.1016/j.apcatb.2021.120039.  doi: 10.1016/j.apcatb.2021.120039

    37. [37]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    38. [38]

      J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, J. Chin. J. Catal. 42 (2021) 56, https://doi.org/10.1016/s1872-2067(20)63634-8.  doi: 10.1016/s1872-2067(20)63634-8

    39. [39]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    40. [40]

      B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988, https://doi.org/10.1016/j.jmat.2021.02.015.  doi: 10.1016/j.jmat.2021.02.015

    41. [41]

      R. Xiong, Y. Song, K. Li, Y. Xiao, B. Cheng, S. Lei, J. Mater. Chem. A 11 (2023) 18398, https://doi.org/10.1039/d3ta03003b.  doi: 10.1039/d3ta03003b

    42. [42]

      X. Chen, Z. Han, Z. Lu, T. Qu, C. Liang, Y. Wang, B. Zhang, X. Han, P. Xu, Sustain. Energ. Fuels 7 (2023) 1311, https://doi.org/10.1039/d2se01717b.  doi: 10.1039/d2se01717b

    43. [43]

      P. A. K. Reddy, H. Han, K. C. Kim, S. Bae, ACS Sustain. Chem. Eng. 12 (2024) 4979, https://doi.org/10.1021/acssuschemeng.3c08378.  doi: 10.1021/acssuschemeng.3c08378

    44. [44]

      C. Zhang, J. Ma, H. Zhu, H. Ding, H. Wu, K. Zhang, X. Zhao, X. Wang, C. Cheng, J. Alloy. Compd. 960 (2023) 170932, https://doi.org/10.1016/j.jallcom.2023.170932.  doi: 10.1016/j.jallcom.2023.170932

    45. [45]

      K. S. Ranjith, R. Maleki, S. M. Ghoreishian, A. Mohammadi, G. S. Rama Raju, Y. S. Huh, Y. -K. Han, J. Mater. Chem. A 12 (2024) 33818, https://doi.org/10.1039/d4ta05970k.  doi: 10.1039/d4ta05970k

    46. [46]

      R. Bariki, Y. P. Bhoi, S. K. Pradhan, S. Panda, S. K. Nayak, K. Das, D. Majhi, B. G. Mishra, Sep. Purif. Technol. 324 (2023) 124509, https://doi.org/10.1016/j.seppur.2023.124509.  doi: 10.1016/j.seppur.2023.124509

    47. [47]

      T. Song, X. Zhang, Q. Che, P. Yang, J. Ind. Eng. Chem. 113 (2022) 389, https://doi.org/10.1016/j.jiec.2022.06.014.  doi: 10.1016/j.jiec.2022.06.014

    48. [48]

      Y. Cheng, J. He, P. Yang, Colloids Surf. A 680 (2024) 132678, https://doi.org/10.1016/j.colsurfa.2023.132678.  doi: 10.1016/j.colsurfa.2023.132678

    49. [49]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001.  doi: 10.1016/j.jmst.2024.12.001

    50. [50]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    51. [51]

      Y. Jiang, M. Li, X. Zhao, Y. Han, Y. Zhou, Z. Li, L. Tian, P. Fu, Y. Chen, J. Li, J. Mater. Eng. Perform. (2024) Early Access, https://doi.org/10.1007/s11665-024-10067-8.

    52. [52]

      Y. Li, W. Zhang, N. Sun, W. Zhang, J. Chen, T. Huang, Q. Wang, J. Zhang, Y. Jiang, Colloids Surf. A 705 (2025) 135604, https://doi.org/10.1016/j.colsurfa.2024.135604.  doi: 10.1016/j.colsurfa.2024.135604

    53. [53]

      T. H. Nguyen Thi, H. T. Huu, H. N. Phi, V. P. Nguyen, Q. D. Le, L. N. Thi, T. T. Trang Phan, V. Vo, J. Sci-Adv Mater. Dev. 7 (2022) 100402, https://doi.org/10.1016/j.jsamd.2021.11.004.  doi: 10.1016/j.jsamd.2021.11.004

    54. [54]

      S. Ding, W. Gan, J. Guo, R. Chen, R. Liu, Z. Zhao, J. Li, M. Zhang, Z. Sun, J. Mater. Chem. C 12 (2024) 7079, https://doi.org/10.1039/d4tc00972j.  doi: 10.1039/d4tc00972j

    55. [55]

      W. Ren, J. Yang, W. Chen, J. Zhang, Y. Sun, Y. Zheng, H. Zhao, B. Liang, Mater. Res. Bull. 153 (2022) 111884, https://doi.org/10.1016/j.materresbull.2022.111884.  doi: 10.1016/j.materresbull.2022.111884

    56. [56]

      T. Lu, Y. Gao, Y. Yang, H. Ming, Z. Huang, G. Liu, D. Zheng, J. Zhang, Y. Hou, Chemosphere 283 (2021) 131256, https://doi.org/10.1016/j.chemosphere.2021.131256.  doi: 10.1016/j.chemosphere.2021.131256

    57. [57]

      J. J. López‐Peñalver, M. Sánchez-Polo, C. V. Gómez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 85 (2010) 1325, https://doi.org/10.1002/jctb.2435.  doi: 10.1002/jctb.2435

    58. [58]

      Q. Li, L. Wang, J. Song, Y. Huang, G. Xie, Y. Liu, H. Li, Arab. J. Chem. 16 (2023) 105081, https://doi.org/10.1016/j.arabjc.2023.105081.  doi: 10.1016/j.arabjc.2023.105081

    59. [59]

      X. Zheng, M. Xu, C. Cai, Y. Yuan, F. Lin, W. Chen, F. Yang, J. Alloy. Compd. 980 (2024) 173630, https://doi.org/10.1016/j.jallcom.2024.173630.  doi: 10.1016/j.jallcom.2024.173630

    60. [60]

      L. Shi, Z. Chang, Y. Wu, X. Tang, P. Jiang, Y. Hua, Q. Shi, J. Xie, Chem. Eng. J. 507 (2025) 160563, https://doi.org/10.1016/j.cej.2025.160563.  doi: 10.1016/j.cej.2025.160563

    61. [61]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    62. [62]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    63. [63]

      F. You, Y. Zhou, D. Li, H. Zhang, D. Gao, X. Ma, R. Hao, J. Liu, J Colloid Interf. Sci. 629 (2023) 871, https://doi.org/10.1016/j.jcis.2022.09.134.  doi: 10.1016/j.jcis.2022.09.134

    64. [64]

      S. Yin, L. Sun, Y. Zhou, X. Li, J. Li, X. Song, P. Huo, H. Wang, Y. Yan, Chem. Eng. J. 406 (2021) 126776, https://doi.org/10.1016/j.cej.2020.126776.  doi: 10.1016/j.cej.2020.126776

    65. [65]

      J. Sun, Y. Qu, G. Wang, Chem. Eng. J. 514 (2025) 163147, https://doi.org/10.1016/j.cej.2025.163147.  doi: 10.1016/j.cej.2025.163147

    66. [66]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    67. [67]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/pku.whxb202307016.  doi: 10.3866/pku.whxb202307016

    68. [68]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    69. [69]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    70. [70]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/s1872-2067(24)60102-6.  doi: 10.1016/s1872-2067(24)60102-6

    71. [71]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    72. [72]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 37 (2025) e202505456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    73. [73]

      X. Luan, Z. Yu, J. Zi, F. Gao, Z. Lian, Adv. Funct. Mater. 33 (2023) 2304259, https://doi.org/10.1002/adfm.202304259.  doi: 10.1002/adfm.202304259

    74. [74]

      Y. Liu, P. Chen, Y. Chen, H. Lu, J. Wang, Z. Yang, Z. Lu, M. Li, L. Fang, RSC Adv. 6 (2016) 10802, https://doi.org/10.1039/c5ra21506d.  doi: 10.1039/c5ra21506d

    75. [75]

      H. Yang, C. Zhu, Q. Wu, X. Li, H. Wang, J. Wan, C. Xie, D. Zeng, Appl. Surf. Sci. 601 (2022) 154213, https://doi.org/10.1016/j.apsusc.2022.154213.  doi: 10.1016/j.apsusc.2022.154213

    76. [76]

      B. Zhang, Z. Zhang, C. Wang, B. Zhang, S. Zhang, N. Luo, H. Bala, Y. Wang, ACS Appl. Nano Mater. 7 (2024) 28457, https://doi.org/10.1021/acsanm.4c05580.  doi: 10.1021/acsanm.4c05580

    77. [77]

      Q. Sun, Y. Li, J. Hao, S. Zheng, T. Zhang, T. Wang, R. Wu, H. Fang, Y. Wang, ACS Appl. Mater. Inter. 13 (2021) 54152, https://doi.org/10.1021/acsami.1c16095.  doi: 10.1021/acsami.1c16095

    78. [78]

      T. Wang, J. Liu, Y. Zhang, Q. Liang, R. Wu, H. -S. Tsai, Y. Wang, J. Hao, J. Mater. Chem. A 10 (2022) 4306, https://doi.org/10.1039/d1ta10461f.  doi: 10.1039/d1ta10461f

    79. [79]

      L. Ma, X. Zhang, J. Wang, M. Ikram, M. Ullah, H. Lv, H. Wu, K. Shi, New J. Chem. 44 (2020) 8650, https://doi.org/10.1039/d0nj01005g.  doi: 10.1039/d0nj01005g

    80. [80]

      Q. Sun, J. Hao, S. Zheng, P. Wan, J. Li, D. Zhang, Y. Li, T. Wang, Y. Wang, Nanotechnology 31 (2020) 425502, https://doi.org/10.1088/1361-6528/aba05b.  doi: 10.1088/1361-6528/aba05b

    81. [81]

      Y. Yang, D. Zhang, D. Wang, Z. Xu, J. Zhang, J. Mater. Chem. A 9 (2021) 14495, https://doi.org/10.1039/d1ta03739k.  doi: 10.1039/d1ta03739k

    82. [82]

      M. Zhang, Y. Li, G. Meng, Z. Liu, Y. Wang, X. Song, J. Tan, Appl. Surf. Sci. 657 (2024) 159778, https://doi.org/10.1016/j.apsusc.2024.159778.  doi: 10.1016/j.apsusc.2024.159778

    83. [83]

      L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv, M. Ullah, M. Khan, H. Yu, K. Shi, J. Hazard. Mater. 393 (2020) 122325, https://doi.org/10.1016/j.jhazmat.2020.122325.  doi: 10.1016/j.jhazmat.2020.122325

    84. [84]

      L. Tang, K. Zhou, H. Su, J. Tang, Q. Wu, L. Luo, X. Guo, D. Zeng, ACS Appl. Nano Mater. 8 (2025) 4636, https://doi.org/10.1021/acsanm.4c07128.  doi: 10.1021/acsanm.4c07128

    85. [85]

      S. Zheng, Y. Li, J. Hao, H. Fang, Y. Yuan, H. -S. Tsai, Q. Sun, P. Wan, X. Zhang, Y. Wang, Appl. Surf. Sci. 568 (2021) 150926, https://doi.org/10.1016/j.apsusc.2021.150926.  doi: 10.1016/j.apsusc.2021.150926

    86. [86]

      Y. Huang, W. Jiao, Z. Chu, S. Wang, L. Chen, X. Nie, R. Wang, X. He, ACS Appl. Mater. Inter. 12 (2020) 997, https://doi.org/10.1021/acsami.9b14952.  doi: 10.1021/acsami.9b14952

    87. [87]

      M. Cheng, Z. Wu, G. Liu, L. Zhao, Y. Gao, B. Zhang, F. Liu, X. Yan, X. Liang, P. Sun, et al., Sens. Actuator B Chem. 291 (2019) 216, https://doi.org/10.1016/j.snb.2019.04.074.  doi: 10.1016/j.snb.2019.04.074

    88. [88]

      C. Kim, J. C. Park, S. Y. Choi, Y. Kim, S. Y. Seo, T. E. Park, S. H. Kwon, B. Cho, J. H. Ahn, Small 14 (2018) 1704116, https://doi.org/10.1002/smll.201704116.  doi: 10.1002/smll.201704116

    89. [89]

      Y. Huang, W. Jiao, Z. Chu, X. Nie, R. Wang, X. He, ACS Appl. Mater. Inter. 12 (2020) 25178, https://doi.org/10.1021/acsami.0c05240.  doi: 10.1021/acsami.0c05240

    90. [90]

      T. Chen, W. Yan, Y. Wang, J. Li, H. Hu, D. Ho, J. Mater. Chem. C 9 (2021) 7407, https://doi.org/10.1039/d1tc00197c.  doi: 10.1039/d1tc00197c

    91. [91]

      Y. Huang, W. Jiao, Z. Chu, G. Ding, M. Yan, X. Zhong, R. Wang, J. Mater. Chem. C 7 (2019) 8616, https://doi.org/10.1039/c9tc02436k.  doi: 10.1039/c9tc02436k

    92. [92]

      I. S. Saggu, S. Singh, K. Chen, Z. Xuan, M. T. Swihart, S. Sharma, ACS Sens. 8 (2023) 243, https://doi.org/10.1021/acssensors.2c02104.  doi: 10.1021/acssensors.2c02104

    93. [93]

      D. Liu, Z. Tang, Z. Zhang, Sens. Actuator B Chem. 324 (2020) 128754, https://doi.org/10.1016/j.snb.2020.128754.  doi: 10.1016/j.snb.2020.128754

    94. [94]

      Q. Wu, Z. Feng, Z. Wang, Z. Peng, L. Zhang, Y. Li, Talanta 253 (2023) 124063, https://doi.org/10.1016/j.talanta.2022.124063.  doi: 10.1016/j.talanta.2022.124063

    95. [95]

      H. Yuan, S. A. A. A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, Y. Gu, et al., Adv. Mater. 31 (2019) 1807161, https://doi.org/10.1002/adma.201807161.  doi: 10.1002/adma.201807161

    96. [96]

      C. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang, C. Xia, T. Bao, J. Wan, R. Huang, J. Zou, et al., Nat. Commun. 11 (2020) 4971, https://doi.org/10.1038/s41467-020-18776-z.  doi: 10.1038/s41467-020-18776-z

    97. [97]

      A. Ali, H. H. D. AlTakroori, Y. E. Greish, A. Alzamly, L. A. Siddig, N. Qamhieh, S. T. Mahmoud, Nanomaterials 12 (2022) 913, https://doi.org/10.3390/nano12060913.  doi: 10.3390/nano12060913

    98. [98]

      Y. Huang, X. Zhang, S. Liu, R. Wang, J. Guo, Y. Chen, X. Ma, Chem. Eng. J. 458 (2023) 141364, https://doi.org/10.1016/j.cej.2023.141364.  doi: 10.1016/j.cej.2023.141364

    99. [99]

      S. Tiwari, A. K. Singh, L. Joshi, P. Chakrabarti, W. Takashima, K. Kaneto, R. Prakash, Sens. Actuator B Chem. 171 (2012) 962, https://doi.org/10.1016/j.snb.2012.06.010.  doi: 10.1016/j.snb.2012.06.010

    100. [100]

      K. Besar, S. Yang, X. Guo, W. Huang, A. M. Rule, P. N. Breysse, I. J. Kymissis, H. E. Katz, Org. Electron. 15 (2014) 3221, https://doi.org/10.1016/j.orgel.2014.08.023.  doi: 10.1016/j.orgel.2014.08.023

    101. [101]

      J. M. McEnaney, A. R. Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Nørskov, Energ. Environ. Sci. 10 (2017) 1621, https://doi.org/10.1039/c7ee01126a.  doi: 10.1039/c7ee01126a

    102. [102]

      T. He, S. Sun, B. Huang, X. Li, ACS Appl. Mater. Inter. 15 (2023) 4194, https://doi.org/10.1021/acsami.2c18097.  doi: 10.1021/acsami.2c18097

    103. [103]

      X. Dong, Q. Han, Y. Kang, H. Li, X. Huang, Z. Fang, H. Yuan, A. A. Elzatahry, Z. Chi, G. Wu, et al., Chin. Chem. Lett. 33 (2022) 567, https://doi.org/10.1016/j.cclet.2021.06.022.  doi: 10.1016/j.cclet.2021.06.022

    104. [104]

      J. Bai, Y. Shen, S. Zhao, A. Li, Z. Kang, B. Cui, D. Wei, Z. Yuan, F. Meng, Adv. Mater. Tec. 8 (2023) 2201671, https://doi.org/10.1002/admt.202201671.  doi: 10.1002/admt.202201671

    105. [105]

      M. Li, W. Li, Vacuum 239 (2025) 114401, https://doi.org/10.1016/j.vacuum.2025.114401.  doi: 10.1016/j.vacuum.2025.114401

    106. [106]

      Q. Zhang, S. Ma, R. Zhang, K. Zhu, Y. Tie, S. Pei, J. Alloy. Compd. 807 (2019) 151650, https://doi.org/10.1016/j.jallcom.2019.151650.  doi: 10.1016/j.jallcom.2019.151650

    107. [107]

      C. Liang, P. Li, S. Yu, Q. Jing, Y. Niu, J. Alloy. Compd. 1022 (2025) 179906, https://doi.org/10.1016/j.jallcom.2025.179906.  doi: 10.1016/j.jallcom.2025.179906

    108. [108]

      R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang, D. Chen, G. Shen, RSC Adv. 7 (2017) 52503, https://doi.org/10.1039/c7ra10537a.  doi: 10.1039/c7ra10537a

    109. [109]

      F. Li, Z. Zeng, M. Wu, L. Liu, W. Li, F. Huang, W. Li, H. Guan, W. Geng, New J. Chem. 46 (2022) 15701, https://doi.org/10.1039/d2nj02683j.  doi: 10.1039/d2nj02683j

    110. [110]

      W. -D. Liu, Y. Xiong, A. Shen, X. -Z. Wang, X. Chang, W. -B. Lu, J. Tian, Rare Metals 43 (2024) 2339, https://doi.org/10.1007/s12598-023-02603-7.  doi: 10.1007/s12598-023-02603-7

    111. [111]

      X. Xu, S. Ma, X. Xu, S. Pei, T. Han, W. Liu, J. Alloy. Compd. 868 (2021) 159286, https://doi.org/10.1016/j.jallcom.2021.159286.  doi: 10.1016/j.jallcom.2021.159286

    112. [112]

      C. Wang, B. Zhang, B. Zhang, Z. Zhang, M. Chen, S. Zhang, H. Bala, Z. Zhang, Sens. Actuator B Chem. 417 (2024) 136118, https://doi.org/10.1016/j.snb.2024.136118.  doi: 10.1016/j.snb.2024.136118

    113. [113]

      Y. Zhang, X. Cheng, X. Zhang, Z. Major, Y. Xu, S. Gao, H. Zhao, L. Huo, Appl. Surf. Sci. 505 (2020) 144533, https://doi.org/10.1016/j.apsusc.2019.144533.  doi: 10.1016/j.apsusc.2019.144533

    114. [114]

      D. -H. Kim, J. -W. Jung, S. -J. Choi, J. -S. Jang, W. -T. Koo, I. -D. Kim, Kim, Sens. Actuator B Chem. 273 (2018) 1269, https://doi.org/10.1016/j.snb.2018.07.002.  doi: 10.1016/j.snb.2018.07.002

    115. [115]

      Y. Han, Y. Ding, W. Zhang, H. Zhuang, Z. Wang, Z. Li, Z. Zhu, Sens. Actuator B Chem. 381 (2023) 133360, https://doi.org/10.1016/j.snb.2023.133360.  doi: 10.1016/j.snb.2023.133360

    116. [116]

      W. Liu, Y. Xiong, A. Shen, X. Wang, X. Chang, W. Lu, J. Tian, Rare Metals 43 (2024) 2339, https://doi.org/10.1007/s12598-023-02603-7.  doi: 10.1007/s12598-023-02603-7

    117. [117]

      J. Liu, B. Zhu, L. Zhang, J. Fan, J. Yu, J Colloid Interf. Sci. 600 (2021) 898, https://doi.org/10.1016/j.jcis.2021.05.082.  doi: 10.1016/j.jcis.2021.05.082

    118. [118]

      J. Liu, L. Zhang, B. Cheng, J. Fan, J. Yu, J. Hazard. Mater. 413 (2021) 125352, https://doi.org/10.1016/j.jhazmat.2021.125352.  doi: 10.1016/j.jhazmat.2021.125352

    119. [119]

      J. Liu, L. Zhang, J. Fan, B. Zhu, J. Yu, Sens. Actuator B Chem. 331 (2021) 129425, https://doi.org/10.1016/j.snb.2020.129425.  doi: 10.1016/j.snb.2020.129425

    120. [120]

      X. Meng, M. Bi, Q. Xiao, W. Gao, Sens. Actuator B Chem. 359 (2022) 131612, https://doi.org/10.1016/j.snb.2022.131612.  doi: 10.1016/j.snb.2022.131612

    121. [121]

      J. Liu, Y. Peng, B. Zhu, Y. Li, L. Zhang, J. Yu, Sens. Actuator B Chem. 357 (2022) 131366, https://doi.org/10.1016/j.snb.2022.131366.  doi: 10.1016/j.snb.2022.131366

    122. [122]

      Y. Peng, B. Cheng, L. Zhang, J. Liu, J. Yu, Sens. Actuator B Chem. 385 (2023) 133700, https://doi.org/10.1016/j.snb.2023.133700.  doi: 10.1016/j.snb.2023.133700

    123. [123]

      J. Liu, L. Zhang, J. Fan, J. Yu, Small 18 (2022) 2104984, https://doi.org/10.1002/smll.202104984.  doi: 10.1002/smll.202104984

    124. [124]

      J. He, X. Qi, J. Liu, H. Zhang, Z. Wang, D. Li, S. Duo, J. Alloy. Compd. 1013 (2025) 178511, https://doi.org/10.1016/j.jallcom.2025.178511.  doi: 10.1016/j.jallcom.2025.178511

  • 加载中
    1. [1]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    7. [7]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    14. [14]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(0)
  • Abstract views(60)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return