苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能

王震寰 韦炜斐 马睿杰 罗豆 陈展翔 张君 于立扬 李刚 罗正辉

引用本文: 王震寰, 韦炜斐, 马睿杰, 罗豆, 陈展翔, 张君, 于立扬, 李刚, 罗正辉. 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能[J]. 物理化学学报, 2026, 42(2): 100182. doi: 10.1016/j.actphy.2025.100182 shu
Citation:  Zhenhuan Wang, Weifei Wei, Ruijie Ma, Dou Luo, Zhanxiang Chen, Jun Zhang, Liyang Yu, Gang Li, Zhenghui Luo. Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100182. doi: 10.1016/j.actphy.2025.100182 shu

苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能

    通讯作者: Email: zhhuiluo@szu.edu.cn (罗正辉)
摘要: 氰基化作为一种有效的分子工程策略,能够通过协同的电子效应和空间效应精确调控有机半导体的前线轨道能级与超分子组装行为。本研究设计并合成了一种新型氰基取代的小分子受体NA8,其基于苯并[a]苯嗪核心结构,利用氰基的高极性和线性构型来增强分子间作用并促进电荷分离。理论与实验结果表明,氰基取代在削弱分子内电荷转移作用(引起吸收蓝移)的同时,显著提升了分子间作用和堆积行为,使NA8表现出相对于中心核无氰基取代的对比分子NA1更高的结晶相干长度。受益于这一分子层面的优化,采用绿色溶剂邻二甲苯制备的PM6:NA8器件实现了19.04%的优异光电转换效率(对比PM6 : NA1的15.14%),其性能提升主要归因于更高的短路电流密度(27.35 mA cm−2)和填充因子(78.3%)。进一步的原子力显微镜(AFM)、掠入射广角X射线衍射(GIWAXS)和瞬态吸收光谱(TAS)表征证实,NA8基器件的优异性能源于更理想的相分离形貌、更高的载流子迁移率以及更快的激子解离过程。尽管开路电压略有降低(0.889 V vs. 0.914 V),这与氰基引入后C–C键振动增强所致的重组能升高相符。综上,核心氰基化为开发兼具高效率与非卤代溶剂加工兼容性的受体材料提供了一条有效途径,并为新一代有机光伏的分子设计提供了参考。

English

    1. [1]

      J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, et al., Joule 3 (2019) 1140, https://doi.org/10.1016/j.joule.2019.01.004. doi: 10.1016/j.joule.2019.01.004

    2. [2]

      R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia, P. Cheng, C. Yan, Q. Fan, S. Liu, L. Ye, et al., Sci. China Mater. 68 (2025) 1689, https://doi.org/10.1007/s40843-025-3366-9. doi: 10.1007/s40843-025-3366-9

    3. [3]

      Y. Li, Y. Xu, F. Yang, X. Jiang, X. Jiang, C. Li, S. You, W. Li, Chin. Chem. Lett. 30 (2019) 222, https://doi.org/10.1016/j.cclet.2018.09.014. doi: 10.1016/j.cclet.2018.09.014

    4. [4]

      A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 5 (2020) 711, https://doi.org/10.1038/s41560-020-00684-7. doi: 10.1038/s41560-020-00684-7

    5. [5]

      L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J.-H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, et al., Nat. Mater. 17 (2018) 253, https://doi.org/10.1038/s41563-017-0005-1. doi: 10.1038/s41563-017-0005-1

    6. [6]

      C. Li, J. Song, H. Lai, H. Zhang, R. Zhou, J. Xu, H. Huang, L. Liu, J. Gao, Y. Li, et al., Nat. Mater. 24 (2025) 433, https://doi.org/10.1038/s41563-024-02087-5. doi: 10.1038/s41563-024-02087-5

    7. [7]

      J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 6 (2022) 614, https://doi.org/10.1038/s41570-022-00409-2. doi: 10.1038/s41570-022-00409-2

    8. [8]

      C. Xie, C. Xiao, H. Niu, G. Feng, W. Li, Chin. Chem. Lett. 35 (2024) 109849, https://doi.org/10.1016/j.cclet.2024.109849. doi: 10.1016/j.cclet.2024.109849

    9. [9]

      J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 17 (2018) 119, https://doi.org/10.1038/NMAT5063. doi: 10.1038/NMAT5063

    10. [10]

      W. Wei, C. Zhang, Zhan. Chen, W. Chen, G. Ran, G. Pan, W. Zhang, P. Buschbaum, Z. Bo, C. Yang, Z. Luo, Angew. Chem. Int. Ed. 63 (2024) e202315625, https://doi.org/10.1002/anie.202315625. doi: 10.1002/anie.202315625

    11. [11]

      L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, et al., Nat. Mater. 21 (2022) 656, https://doi.org/10.1038/s41563-022-01244-y. doi: 10.1038/s41563-022-01244-y

    12. [12]

      K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, et al., Nat. Energy 7 (2022) 1076, https://doi.org/10.1038/s41560-022-01138-y. doi: 10.1038/s41560-022-01138-y

    13. [13]

      L. Wang, C. Chen, Y. Fu, C. Guo, D. Li, J. Cheng, W. Sun, Z. Gan, Y. Sun, B. Zhou, et al., Nat. Energy 9 (2024) 208, https://doi.org/10.1038/s41560-023-01436-z. doi: 10.1038/s41560-023-01436-z

    14. [14]

      K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 34 (2022) 2109516, https://doi.org/10.1002/adma.202109516. doi: 10.1002/adma.202109516

    15. [15]

      J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang, X. Liu, S. Zhang, X. Hao, M. Zhang, Y. Li, J. Hou, Natl. Sci. Rev. 10 (2023) nwad085, https://doi.org/10.1093/nsr/nwad085. doi: 10.1093/nsr/nwad085

    16. [16]

      C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, et al., Nat. Energy 6 (2022) 605, https://doi.org/10.1038/s41560-021-00820-x. doi: 10.1038/s41560-021-00820-x

    17. [17]

      Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170, https://doi.org/10.1002/adma.201404317. doi: 10.1002/adma.201404317

    18. [18]

      Q. Bei, B. Zhang, K. Wang, S. Zhang, G. Xing, C. Cabanetos, Chin. Chem. Lett. 35 (2024) 108438, https://doi.org/10.1016/j.ccle.2023.108438. doi: 10.1016/j.ccle.2023.108438

    19. [19]

      H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen, L. Yu, G. Zhang, C. Yang, Z. Luo, Sci. China Chem. 2025, 68, https://doi.org/10.1007/s11426-025-2671-6. doi: 10.1007/s11426-025-2671-6

    20. [20]

      P. Zhang, Z. Zhang, H. Sun, J. Li, Y. Chen, J. Wang, C. Zhan, Chin. Chem. Lett. 35 (2024) 108802, https://doi.org/10.1016/j.cclet.2023.108802. doi: 10.1016/j.cclet.2023.108802

    21. [21]

      Y. Wang, X. Jiang, H. Song, N. Wei, Y. Wang, X. Xu, C. Li, H. Lu, Y. Liu, Z. Bo, Acta Phys. Chim. Sin. 41 (2025) 100027, https://doi.org/10.3866/pku.Whxb202406007. doi: 10.3866/pku.Whxb202406007

    22. [22]

      Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 6 (2022) 171, https://doi.org/10.1016/j.joule.2021.12.017. doi: 10.1016/j.joule.2021.12.017

    23. [23]

      W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao, D. Jiang, J. Yu, G. Zhang, H. Yin, R. Yang, et al., Adv. Mater. 37 (2025) 2413125, https://doi.org/10.1002/adma.202413125. doi: 10.1002/adma.202413125

    24. [24]

      Y. Xu, Y. Liao, W. Wang, Y. Wang, J. Wang, Z. Suo, F. Li, R. Wang, W. Ni, B. Kan, et al., Adv. Mater. 37 (2025) 2501653, https://doi.org/10.1002/adma.202501653. doi: 10.1002/adma.202501653

    25. [25]

      S. Wang, S. Wang, J. Wang, N. Yu, J. Qiao, X. Xie, C. Li, M. S. Abbasi, R. Ding, X. Zhang, et al., Adv. Energy Mater. 37 (2025) 2405205, https://doi.org/10.1002/aenm.202405205. doi: 10.1002/aenm.202405205

    26. [26]

      S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 36 (2024) 2400342, https://doi.org/10.1002/adma.202400342. doi: 10.1002/adma.202400342

    27. [27]

      B. Fan, H. Gao, L. Yu, R. Li, L. Wang, W. Zhong, Y. Wang, W. Jiang, H. Fu, T. Chen, et al., Angew. Chem. Int. Ed. 64 (2025) e202418439, https://doi.org/10.1002/anie.202418439. doi: 10.1002/anie.202418439

    28. [28]

      J. Guo, S. Qin, J. Zhang, C. Zhu, X. Xia, Y. Gong, T. Liang, Y. Zeng, G. Han, H. Zhuo, et al., Nat. Commun. 16 (2025) 1503, https://doi.org/10.1038/s41467-025-56799-6. doi: 10.1038/s41467-025-56799-6

    29. [29]

      Z. Luo, W. Wei, R. Ma, G. Ran, M. H. Jee, Z. Chen, Y. Li, W. Zhang, H. Y. Woo, C. Yang, Adv. Mater. 36 (2024) 2407517, https://doi.org/10.1002/adma.202407517. doi: 10.1002/adma.202407517

    30. [30]

      S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu, K. Wang, M. Wang, W. Ma, J. Xia, Z. Ma, et al., Energy Environ. Sci. 18 (2025) 313, https://doi.org/10.1039/d4ee03778b. doi: 10.1039/d4ee03778b

    31. [31]

      L. Zeng, R. Hu, M. Zhang, S. Lee, Q. Wang, S. Meng, Q. Chen, J. Liu, L. Xue, L. Mi, et al., Energy Environ. Sci. 18 (2025) 6754, https://doi.org/10.1039/d5ee01686j. doi: 10.1039/d5ee01686j

    32. [32]

      C. Li, G. Yao, X. Gu, J. Lv, Y. Hou, Q. Lin, N. Yu, M. S. Abbasi, X. Zhang, J. Zhang, et al., Nat. Commun. 15 (2024) 8872, https://doi.org/10.1038/s41467-024-53286-2. doi: 10.1038/s41467-024-53286-2

    33. [33]

      Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 9 (2024) 975, https://doi.org/10.1038/s41560-024-01557-z. doi: 10.1038/s41560-024-01557-z

    34. [34]

      X. Song, B. Zhang, X. Liu, L. Mei, H. Li, S. Yin, X. Zhou, H. Chen, Y. Lin, W. Zhu, X.-K. Chen, Adv. Mater. 37 (2025) 2418393, https://doi.org/10.1002/adma.202418393. doi: 10.1002/adma.202418393

    35. [35]

      N. Wei, H. Lu, Y. Wei, Y. Guo, H. Song, J. Chen, Z. Yang, Y. Cheng, Z. Bian, W. Zhang, et al., Energy Environ. Sci. 18 (2025) 2298, https://doi.org/10.1039/d4ee05375c. doi: 10.1039/d4ee05375c

    36. [36]

      M. Zhang, L. Zhu, J. Yan, X. Xue, Z. Wang, F. Eisner, G. Zhou, R. Zeng, L. Kan, L. Wu, et al., Joule 9 (2025) 101851, https://doi.org/10.1016/j.joule.2025.101851. doi: 10.1016/j.joule.2025.101851

    37. [37]

      J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang, B. Lan, W. Feng, H. Liu, Y. Liu, X. Wan, et al., Angew. Chem. Int. Ed. 64 (2025) e202423562, https://doi.org/10.1002/anie.202423562. doi: 10.1002/anie.202423562

    38. [38]

      H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding, J. Zhou, Z. Wang, H. Li, W. Chen, J. Zhu, et al., Nat. Mater. 24 (2025) 444, https://doi.org/10.1038/s41563-024-02062-0. doi: 10.1038/s41563-024-02062-0

    39. [39]

      Z. Chen, J. Ge, W. Song, X. Tong, H. Liu, X. Yu, J. Li, J. Shi, L. Xie, C. Han, Q. Liu, Z. Ge, Adv. Mater. 36 (2024) e2406690, https://doi.org/10.1002/adma.202406690. doi: 10.1002/adma.202406690

    40. [40]

      B. Cheng, W. Hou, C. Han, S. Cheng, X. Xia, X. Guo, Y. Li, M. Zhang, Energy Environ. Sci. 18 (2025) 1375, https://doi.org/10.1039/d4ee04623d. doi: 10.1039/d4ee04623d

    41. [41]

      Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang, T. Zhang, R. Xu, H. Liu, W. Zhang, Z. Wei, et al., Adv. Mater. 37 (2025) 2500282, https://doi.org/10.1002/adma.202500282. doi: 10.1002/adma.202500282

    42. [42]

      R. Ma, B. Zou, Y. Hai, Y. Luo, Z. Luo, J. Wu, H. Yan, G. Li, Adv. Mater. 37 (2025) 2500861, https://doi.org/10.1002/adma.202500861. doi: 10.1002/adma.202500861

    43. [43]

      C. Wang, Q. Chen, C. Zhang, B. Han, X. Liu, S. Liang, B. Wang, C. Xiao, B. Gao, Z. Tang, et al., CCS Chem. 7 (2025) 1177, https://doi.org/10.31635/ccschem.024.202404023. doi: 10.31635/ccschem.024.202404023

    44. [44]

      R. Li, S. Liang, Y. Xu, C. Zhang, Z. Tang, B. Liu, W. Li, Acta Phys.-Chim. Sin. 40 (2024) 2307037, https://doi.org/10.3866/PKU.WHXB202307037. doi: 10.3866/PKU.WHXB202307037

    45. [45]

      Y. Cho, Z. Sun, K. M. Lee, G. Zeng, S. Jeong, S. Yang, J. E. Lee, B. Lee, S.-H. Kang, Y. Li, et al., ACS Energy Lett. 8 (2023) 96, https://doi.org/10.1021/acsenergylett.2c02140. doi: 10.1021/acsenergylett.2c02140

    46. [46]

      L. Chen, C. Zhao, H. Yu, A. Sergeev, L. Zhu, K. Ding, Y. Fu, H. M. Ng, C. H. Kwok, X. Zou, et al., Adv. Energy Mater. 14 (2024) 2400285, https://doi.org/10.1002/aenm.202400285. doi: 10.1002/aenm.202400285

    47. [47]

      X. Ran, C. Zhang, D. Qiu, A. Tang, J. Li, T. Wang, J. Zhang, Z. Wei, K. Lu, Adv. Mater. 37 (2025) 2504805, https://doi.org/10.1002/adma.202504805. doi: 10.1002/adma.202504805

    48. [48]

      K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 143 (2021) 1539, https://doi.org/10.1021/jacs.0c11608.

    49. [49]

      Y. Li, H. Fu, Z. Wu, X. Wu, M. Wang, H. Qin, F. Lin, H. Y. Woo, A. K. Jen, ChemSusChem 14 (2021) 3579, https://doi.org/10.1002/cssc.202100746. doi: 10.1002/cssc.202100746

    50. [50]

      Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao, L. Zhu, Q. Bai, C. Xie, P. You, J. Lv, et al., Adv. Mater. 36 (2024) 2411957, https://doi.org/10.1002/adma.20241195 doi: 10.1002/adma.20241195

    51. [51]

      D. Luo, L. Zhang, J. Zeng, H. Zhang, L. Li, T. Dai, B. Xu, E. Zhou, A. K. K. Kyaw, Y. Chen, W. Y. Wong, Adva. Mater. 36 (2024) 2410880, https://doi.org/10.1002/adma.202410880. doi: 10.1002/adma.202410880

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  13
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-07-09
  • 接受日期:  2025-09-04
  • 修回日期:  2025-08-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章