引用本文: dos Santos MoraisDébora Ferreira, TiradoJosé Luis, Pérez-VicenteCarlos, da MottaFabiana Villela, LavelaPedro, BomioMauricio, LavelaSergio. 通过Nb2O5包覆提升Na3V2(PO4)3正极的储钠性能[J]. 物理化学学报, 2026, 42(2): 100180. doi: 10.1016/j.actphy.2025.100180 shu
Citation:  Débora Ferreira dos Santos Morais, José Luis Tirado, Carlos Pérez-Vicente, Fabiana Villela da Motta, Pedro Lavela, Mauricio Bomio, Sergio Lavela. Unlocking the performance of sodium-ion batteries by coating Na3V2(PO4)3 with Nb2O5[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100180. doi: 10.1016/j.actphy.2025.100180 shu

通过Nb2O5包覆提升Na3V2(PO4)3正极的储钠性能

    通讯作者: Email: iq1ticoj@uco.es (José Luis Tirado)
摘要: Na3V2(PO4)3 (NVP)因其NASICON型框架结构可实现高效可逆的钠离子脱嵌,因此被认为是一种极具前景的钠离子电池正极材料。然而,其实际性能受限于高倍率下的缓慢电荷转移和循环稳定性不足。本研究采用简易浸渍法在NVP颗粒表面沉积Nb2O5,旨在提升材料的高倍率性能和长循环稳定性。结构与光谱分析(XRD、电子显微镜、拉曼光谱、XPS和X射线荧光光谱)证实包覆后NVP仍保持良好的结晶性,且Nb2O5均匀分布于颗粒表面而不影响钠离子的可逆脱嵌。电化学测试表明,与未包覆样品相比,Nb2O5包覆样品中Na+扩散系数显著提高,从而提升了高倍率性能和循环稳定性,其中3% Nb2O5包覆样品表现出最高的扩散系数和最优异的循环稳定性。循环伏安和阻抗测试结果表明,包覆样品的表面电容增强,从而促进了钠离子的快速存储。XPS结果显示Nb2O5可清除电解液中的痕量HF,避免了其对NVP电极结构的破坏。长循环测试验证了包覆电极结构的长期稳定性。这些结果表明,Nb2O5包覆是解决NVP电极本征缺陷的有效策略,为开发高性能钠离子电池提供了可行途径。

English

    1. [1]

      C. McGlade, P. Ekins, Nature 517 (2015) 187, https://doi.org/10.1038/nature14016. doi: 10.1038/nature14016

    2. [2]

      K. L. Swanson, G. Sugihara, A. A. Tsonis, Proc. Natl. Acad. Sci. 106 (2009) 16120, https://doi.org/10.1073/pnas.0908699106. doi: 10.1073/pnas.0908699106

    3. [3]

      N. L. Panwar, S. C. Kaushik, S. Kothari, Renew. Sustain. Energy Rev. 15 (2011) 1513, https://doi.org/10.1016/j.rser.2010.11.037. doi: 10.1016/j.rser.2010.11.037

    4. [4]

      S. Asiaban, N. Kayedpour, A. E. Samani, D. Bozalakov, J. D. M. De Kooning, G. Crevecoeur, L. Vandevelde, Energies 14 (2021) 2630, https://doi.org/10.3390/en14092630. doi: 10.3390/en14092630

    5. [5]

      S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, H. Mokhlis, Renew. Sustain. Energy Rev. 25 (2013) 135, https://doi.org/10.1016/j.rser.2013.03.056. doi: 10.1016/j.rser.2013.03.056

    6. [6]

      Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou, Z. He, Nano-Micro Lett. 14 (2022) 218, https://doi.org/10.1016/10.1007/s40820-022-00960-z. doi: 10.1016/10.1007/s40820-022-00960-z

    7. [7]

      C. Helbig, A. M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, J. Clean. Prod. 172 (2018) 274, https://doi.org/10.1016/j.jclepro.2017.10.122. doi: 10.1016/j.jclepro.2017.10.122

    8. [8]

      K. C. Bhowmik, Md. A. Rahman, Md. M. Billah, A. Paul, Chem. Rec. 24 (2024) e202400176, https://doi.org/10.1002/tcr.202400176. doi: 10.1002/tcr.202400176

    9. [9]

      Y. Wu, W. Shuang, Y. Wang, F. Chen, S. Tang, X.-L. Wu, Z. Bai, L. Yang, J. Zhang, Energy Rev. 7 (2024) 17, https://doi.org/10.1007/s41918-024-00215-y. doi: 10.1007/s41918-024-00215-y

    10. [10]

      M. Mamoor, Y. Li, L. Wang, Z. Jing, B. Wang, G. Qu, L. Kong, Y. Li, Z. Guo, L. Xu, Green Energy and Resources 1 (2023) 100033, https://doi.org/10.1016/j.gerr.2023.100033. doi: 10.1016/j.gerr.2023.100033

    11. [11]

      N. Nagmani, D. Pahari, P. Verma, S. Puravankara, J. Energy Storage 56 (2022) 105961, https://doi.org/10.1016/j.est.2022.105961. doi: 10.1016/j.est.2022.105961

    12. [12]

      L. Terborg, S. Weber, F. Blaske, S. Passerini, M. Winter, U. Karst, S. J. Power Sources 242 (2013) 832, https://doi.org/10.1016/j.jpowsour.2013.05.125. doi: 10.1016/j.jpowsour.2013.05.125

    13. [13]

      S. F. Lux, J. Chevalier, I. T. Lucas, R. Kostecki, ECS Electrochem. Lett. 2 (2013) A121, https://doi.org/10.1149/2.005312eel. doi: 10.1149/2.005312eel

    14. [14]

      Y.-k. Sun, K.-j. Hong, J. Prakash, K. Amine, Electrochem. Commun. 4 (2002) 344, https://doi.org/10.1016/s1388-2481(02)00277-1. doi: 10.1016/s1388-2481(02)00277-1

    15. [15]

      S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon 105 (2016) 52, https://doi.org/10.1016/j.carbon.2016.04.008. doi: 10.1016/j.carbon.2016.04.008

    16. [16]

      M. Lu, H. Cheng, Y. Yang, Electrochim. Acta 53 (2007) 3539, https://doi.org/10.1016/j.electacta.2007.09.062. doi: 10.1016/j.electacta.2007.09.062

    17. [17]

      Y. Zhang, J. Zhou, W. Xu, W. Zhang, X. Li, W. Zhou, N. Wang, M. Liu, J. Mao, K. Dai, J. Electron. Mater. 53 (2024) 7699, https://doi.org/10.1007/s11664-024-11438-6. doi: 10.1007/s11664-024-11438-6

    18. [18]

      E. Dogan, R. Whba, E. Altin, I. Moeez, K. Y. Chung, R. Stoyanova, V. Koleva, A. Aktas, S. Altin, S. Sahinbay, J. Power Sources 632 (2025) 236327, https://doi.org/10.1016/j.jpowsour.2025.236327. doi: 10.1016/j.jpowsour.2025.236327

    19. [19]

      S. Bao, S.-H. Luo, J.-L. Lu, Ceram. Int. 46 (2020) 16080, https://doi.org/10.1016/j.ceramint.2020.03.160. doi: 10.1016/j.ceramint.2020.03.160

    20. [20]

      M. L. Kalapsazova, K. L. Kostov, R. R. Kukeva, E. N. Zhecheva, R. K. Stoyanova, J. Phys. Chem. Lett. 12 (2021) 7804, https://doi.org/10.1021/acs.jpclett.1c01982. doi: 10.1021/acs.jpclett.1c01982

    21. [21]

      T.-F. Yi, H. M. K. Sari, X. Li, F. Wang, Y.-R. Zhu, J. Hu, J. Zhang, X. Li, Nano Energy 85 (2021) 105955, https://doi.org/10.1021/10.1016/j.nanoen.2021.105955. doi: 10.1021/10.1016/j.nanoen.2021.105955

    22. [22]

      G. Xu, Q. Wang, Y. Su, M. Liu, Q. Li, Y. Zhang, Acta Phys.-Chim. Sin. 38 (2022) 2009073, https://doi.org/10.3866/PKU.WHXB202009073. doi: 10.3866/PKU.WHXB202009073

    23. [23]

      J. Xu, F. Xie, L. Huang, N Li, S Peng, W. Ma, K. Zhang, Y. Wu, L. Shao, X. Shi, J. Chen, L. Tao, K. Zhang, Z. Zhang, Y. Wang, Z. Sun, Nature Commun. 16 (2025) 4977, https://doi.org/10.1038/s41467-025-60186-6. doi: 10.1038/s41467-025-60186-6

    24. [24]

      Y. Jiang, X. Hu, Electron. 1 (2023) e15, https://doi.org/10.1002/elt2.15. doi: 10.1002/elt2.15

    25. [25]

      H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang, S. Jeong, J. Lee, K. Kang, Nano Energy 16 (2015) 62, https://doi.org/10.1016/j.nanoen.2015.05.015. doi: 10.1016/j.nanoen.2015.05.015

    26. [26]

      H. Yang, R Xu, Y Gong, Y Yao, L Gu, Y. Yua, Nano Energy 48 (2018) 448, https://doi.org/10.1016/j.nanoen.2018.04.006. doi: 10.1016/j.nanoen.2018.04.006

    27. [27]

      L. N. Zhao, T. Zhang, H. L. Zhao, Y. L. Hou, Mater. Today Nano 10 (2020) 100072, https://doi.org/10.1016/j.mtnano.2020.100072. doi: 10.1016/j.mtnano.2020.100072

    28. [28]

      N. Guo, Z. Peng, W. Huo, Y. Li, S. Liu, L. Kang, X. Wu, L. Dai, L. Wang, S. C. Jun, Z. He, Small 19 (2023) 2303963, https://doi.org/10.1002/smll.202303963. doi: 10.1002/smll.202303963

    29. [29]

      R. S. Kate, H. S. Jadhav, U. P. Chothe, K. Bhattacharjee, M. V. Kulkarni, R. J. Deokate, B. B. Kale, R. S. Kalubarme, J. Mater. Chem. A 12 (2024) 7418, https://doi.org/10.1039/d3ta07545a. doi: 10.1039/d3ta07545a

    30. [30]

      F. He, J. Kang, T. Liu, H. Deng, B. Zhong, Y. Sun, Z. Wu, X. Guo, Ind. Eng. Chem. Res. 62 (2023) 3444, https://doi.org/10.1021/acs.iecr.2c04054. doi: 10.1021/acs.iecr.2c04054

    31. [31]

      Q. Huang, Z. Hu, K. Chen, Z. Zeng, Y. Sun, Q. Kong, W. Feng, K. Wang, Z. Li, Z. Wu, T. Chen, X. Guo, ACS Appl. Energy Mater. 6 (2023) 2657, https://doi.org/10.1021/acsaem.2c04083. doi: 10.1021/acsaem.2c04083

    32. [32]

      J. Hu, X. Li, Q. Liang, L. Xu, C. Ding, Y. Liu, Y. Gao, Nano-Micro Lett. 17 (2024) 33, https://doi.org/10.1007/s40820-024-01526-x. doi: 10.1007/s40820-024-01526-x

    33. [33]

      R. Klee, M. Wiatrowski, M. J. Aragón, P. Lavela, G. F. Ortiz, R. Alcántara, J. L. Tirado, ACS Appl. Mater. Interfaces 9 (2016) 1471, https://doi.org/10.1021/acsami.6b12688. doi: 10.1021/acsami.6b12688

    34. [34]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Power Sources 625 (2024) 235703, https://doi.org/10.1016/j.jpowsour.2024.235703. doi: 10.1016/j.jpowsour.2024.235703

    35. [35]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Energy Storage 118 (2025) 116295, https://doi.org/10.1016/j.est.2025.116295. doi: 10.1016/j.est.2025.116295

    36. [36]

      I. V. Zatovsky, NASICON-type Na3V2(PO4)3, Acta Cryst. E: Struct. Rep. Online 66 (2010) i12, https://doi.org/10.1107/s1600536810002801. doi: 10.1107/s1600536810002801

    37. [37]

      Z. Jian, W. Han, X. Lu, H. Yang, Y. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater. 3 (2012) 156, https://doi.org/10.1002/aenm.201200558. doi: 10.1002/aenm.201200558

    38. [38]

      Y. Zhou, M. Sun, M. Cao, Y. Zeng, M. Su, A. Dou, X. Hou, Y. Liu, J. Colloid Interface Sci. 657 (2023) 472, https://doi.org/10.1016/j.jcis.2023.12.008. doi: 10.1016/j.jcis.2023.12.008

    39. [39]

      A. L. Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari, S. J. Phys. Chem. C 114 (2009) 664, https://doi.org/10.1021/jp9088589. doi: 10.1021/jp9088589

    40. [40]

      S. Qi, R. Zuo, Y. Liu, Y. Wang, Mater. Res. Bull. 48 (2012) 1213, https://doi.org/10.1016/j.materresbull.2012.11.074. doi: 10.1016/j.materresbull.2012.11.074

    41. [41]

      F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53 (1970) 1126, https://doi.org/10.1063/1.1674108. doi: 10.1063/1.1674108

    42. [42]

      A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (8) (2005) 1731, https://doi.org/10.1016/j.carbon.2005.02.018. doi: 10.1016/j.carbon.2005.02.018

    43. [43]

      A. H. Al-Marri, F. Janene, A. Moulahi, A. T. Mogharbel, E. S. Al-Farraj, A. M. Al-Mohaimeed, I. Mjejri, Ionics 29 (2023) 5505, https://doi.org/10.1007/s11581-023-05255-w. doi: 10.1007/s11581-023-05255-w

    44. [44]

      L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Sci. Rep. 6 (2016), 21177https://doi.org/10.1038/srep21177. doi: 10.1038/srep21177

    45. [45]

      Y. Uebou, T. Kiyabu, S. Okada, J.-I. Yamaki, The Rep. Inst. Adv. Mater. Study, 16 (2002) 1.https://doi.org/10.15017/7951. doi: 10.15017/7951

    46. [46]

      M. Gaberšček, Nat. Commun. 12 (2021) 6513, https://doi.org/10.1038/s41467-021-26894-5. doi: 10.1038/s41467-021-26894-5

    47. [47]

      L. S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki, J. Electrochem. Soc. 157 (2010) A536, https://doi.org/10.1149/1.3298903. doi: 10.1149/1.3298903

    48. [48]

      X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J. Y. Lee, J. Mater Chem A, 4 (2016) 14669, https://doi.org/10.1039/c6ta05030a. doi: 10.1039/c6ta05030a

    49. [49]

      K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S. O. Steinmueller, S. H. Tolbert, B. M. Smarsly, B. Dunn, T. Brezesinski, J. Am. Chem. Soc. 132 (2010) 6982, https://doi.org/10.1021/ja9106385. doi: 10.1021/ja9106385

    50. [50]

      T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S. H. Tolbert, J. Am. Chem. Soc. 131 (2009) 1802, https://doi.org/10.1021/ja8057309. doi: 10.1021/ja8057309

    51. [51]

      J. E. B. Randles, Trans. Faraday Soc. 44 (1948) 327, https://doi.org/10.1039/TF9484400327. doi: 10.1039/TF9484400327

    52. [52]

      A. Sevcík, Collect. Czech Chem. Commun. 13 (1948) 349, https://doi.org/10.1135/cccc19480349. doi: 10.1135/cccc19480349

    53. [53]

      X. He, Y. Ling, Y. Wu, Y. Lei, D. Cao, C. Zhang, Small 21 (2025) 2412817, https://doi.org/10.1002/smll.202412817. doi: 10.1002/smll.202412817

    54. [54]

      Y. Zhao, Z. Zhang, Y. Zheng, Y. Luo, X. Jiang, Y. Wang, Z. Wang, Y. Wu, Y. Zhang, X. Liu, B. Fang, Nanomaterials 14 (2024) 1604, https://doi.org/10.3390/nano14191604. doi: 10.3390/nano14191604

    55. [55]

      H. Bai, X. Zhu, H. Ao, G. He, H. Xiao, Y. Chen, J. Energy Chem. 90 (2023) 518, https://doi.org/10.1016/j.jechem.2023.11.004. doi: 10.1016/j.jechem.2023.11.004

    56. [56]

      R. Liu, S. Zheng, Y. Yuan, P. Yu, Z. Liang, W. Zhao, R. Shahbazian‐Yassar, J. Ding, J. Lu, Y. Yang, Adv. Energy Mater. 11 (2020) 2003256, https://doi.org/10.1002/aenm.202003256.

    57. [57]

      A. H. Al-Marri, F. Janene, A. Moulahi, A. T. Mogharbel, E. S. Al-Farraj, A. M. Al-Mohaimeed, I. Mjejri, Ionics 29 (2023) 5505, https://doi.org/10.1007/s11581-023-05255-w. doi: 10.1007/s11581-023-05255-w

    58. [58]

      K. Islam, R. Sultana, A. Rakshit, U. K. Goutam, S. Chakraborty, SN Appl. Sci. 2 (2020) 782, https://doi.org/10.1007/s42452-020-2558-x. doi: 10.1007/s42452-020-2558-x

    59. [59]

      Z. Li, F. Huang, B. Peng, A. Yan, H. Dong, H. Feng, H. Zhao, Mater. Lett. 214 (2017) 165, https://doi.org/10.1016/j.matlet.2017.11.124. doi: 10.1016/j.matlet.2017.11.124

    60. [60]

      Y. Luo, P. Wang, L.-P. Ma, H.-M. Cheng, J. Alloys Compd. 453 (2007) 138, https://doi.org/10.1016/j.jallcom.2006.11.113. doi: 10.1016/j.jallcom.2006.11.113

    61. [61]

      S. Lavela, A. C. D. N. Santos, F. V. Da Motta, M. R. D. Bomio, P. Lavela, C. P. Vicente, J. L. Tirado, ACS Appl. Mater. Interfaces 16 (2024) 56975, https://doi.org/10.1021/acsami.4c09706. doi: 10.1021/acsami.4c09706

    62. [62]

      G. H. Waller, P. D. Brooke, B. H. Rainwater, S. Y. Lai, R. Hu, Y. Ding, F. M. Alamgir, K. H. Sandhage, M. L. Liu, J. Power Sources 306 (2015) 162, https://doi.org/10.1016/j.jpowsour.2015.11.114. doi: 10.1016/j.jpowsour.2015.11.114

    63. [63]

      S. Lavela, C. Pérez-Vicente, P. Lavela, J. L. Tirado, J. Energy Storage 118 (2025) 116295, https://doi.org/10.1016/j.est.2025.116295. doi: 10.1016/j.est.2025.116295

    64. [64]

      L. Baggetto, N. J. Dudney, G. M. Veith, Electrochim. Acta 90 (2012) 135, https://doi.org/10.1016/j.electacta.2012.11.120. doi: 10.1016/j.electacta.2012.11.120

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  12
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-06-24
  • 接受日期:  2025-09-04
  • 修回日期:  2025-08-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章