Citation: Yihong Shao, Rongchen Shen, Song Wang, Shijie Li, Peng Zhang, Xin Li. Composition engineering in covalent organic frameworks for tailored photocatalysis[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100176. doi: 10.1016/j.actphy.2025.100176 shu

Composition engineering in covalent organic frameworks for tailored photocatalysis

  • Corresponding author: Song Wang, wangsong1984@hbuas.edu.cn Shijie Li, lishijie@zjou.edu.cn Peng Zhang, zhangp@zzu.edu.cn Xin Li, Xinli@scau.edu.cn
  • Received Date: 8 August 2025
    Revised Date: 28 August 2025
    Accepted Date: 28 August 2025

    Fund Project: the National Natural Science Foundation of China 22378148the National Natural Science Foundation of China 21975084the Natural Science Foundation of Guangdong Province 2024A1515012433the National Natural Science Foundation of China 2230082074

  • The harmful effects of the energy crisis and environmental degradation are becoming increasingly severe, which urgently demands the advancement of eco-friendly and sustainable production techniques. Direct conversion of abundant solar energy into chemical energy represents a promising green and efficient technological solution. In this process, photocatalysts play a pivotal role. Covalent organic frameworks (COFs), a class of porous materials interconnected by covalent bonds, exhibit exceptional potential for photocatalysis due to their high surface area, excellent crystallinity, and tunable structures. This review discusses the roles of compositional regulation in enhancing the photocatalytic performance of COFs, including modulating light absorption, increasing active sites, promoting exciton dissociation, and improving carrier separation. Furthermore, computational and mechanistic characterization methods are also discussed. More importantly, the key strategies in compositional regulation, such as heteroatom engineering, metal single-atom engineering, ion engineering, functional group engineering, Donor-Acceptor (D-A) molecular engineering, side chain engineering, multi-component engineering, isomerism engineering, conjugate bridge engineering, single-molecule junction engineering, and interlayer engineering, are carefully summarized. Moreover, their diversified modification strategies and applications in photocatalytic hydrogen (H2) evolution, hydrogen peroxide (H2O2) production, and carbon dioxide (CO2) reduction are also addressed. Finally, the current challenges and future opportunities for COF-based photocatalysis are outlined.
  • 加载中
    1. [1]

      D. Shindell, C. J. Smith, Nature 573 (2019) 408, https://doi.org/10.1038/s41586-019-1554-z  doi: 10.1038/s41586-019-1554-z

    2. [2]

      T. Banerjee, F. Podjaski, J. Kröger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 6 (2021) 168, https://doi.org/10.1038/s41578-020-00254-z  doi: 10.1038/s41578-020-00254-z

    3. [3]

      W. Zhou, Q. Jing, J. Li, Y. Chen, G. Hao, L. -N. Wang, Acta Phys. Chim. Sin. 38 (2022) 2211010, https://doi.org/10.3866/pku.Whxb202211010  doi: 10.3866/pku.Whxb202211010

    4. [4]

      D. N. Ampong, E. Effah, E. A. Tsiwah, A. Kumar, E. Agyekum, E. N. A. Doku, O. Issaka, F. O. Agyemang, K. Mensah-Darkwa, R. K. Gupta, Coordin. Chem. Rev. 519 (2024) 216121, https://doi.org/10.1016/j.ccr.2024.216121  doi: 10.1016/j.ccr.2024.216121

    5. [5]

      D. Li, Chem. Res. Chin. Univ. 41 (2025) 472, https://doi.org/10.1007/s40242-025-5060-6  doi: 10.1007/s40242-025-5060-6

    6. [6]

      N. Zahir, V. Rajangam, S. S. Kalanur, S. I. Nikitenko, B. G. Pollet, Energy Environ. Mater. 8 (2025) e70014, https://doi.org/10.1002/eem2.70014  doi: 10.1002/eem2.70014

    7. [7]

      S. Peng, D. Liu, H. Bai, C. Liu, J. Feng, K. An, L. Qiao, K. H. Lo, H. Pan, EcoEnergy 3 (2025) 25, https://doi.org/10.1002/ece2.73  doi: 10.1002/ece2.73

    8. [8]

      H. Meskher, A. R. Woldu, P. K. Chu, F. Lu, L. Hu, EcoEnergy 2 (2024) 630, https://doi.org/10.1002/ece2.68  doi: 10.1002/ece2.68

    9. [9]

      J. Chen, S. Gao, T. Gan, B. Wang, EcoEnergy n/a (2025) e96, https://doi.org/10.1002/ece2.96  doi: 10.1002/ece2.96

    10. [10]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64551-6  doi: 10.1016/s1872-2067(23)64551-6

    11. [11]

      M. Zhang, K. Li, C. Hu, K. Ma, W. Sun, X. Huang, Y. Ding, Chin. J. Catal. 47 (2023) 254, https://doi.org/10.1016/S1872-2067(23)64393-1  doi: 10.1016/S1872-2067(23)64393-1

    12. [12]

      W. Hu, Z. Zhang, G. Mu, J. Hazard. Mater. 494 (2025) 138532, https://doi.org/10.1016/j.jhazmat.2025.138532  doi: 10.1016/j.jhazmat.2025.138532

    13. [13]

      S. -J. Liu, T. -T. Hu, H. -Q. Chu, Z. -Z. Li, W. Zhou, Rare. Metals 44 (2025) 3622, https://doi.org/10.1007/s12598-024-03182-x  doi: 10.1007/s12598-024-03182-x

    14. [14]

      C. Feng, Z. -P. Wu, K. -W. Huang, J. Ye, H. Zhang, Adv. Mater. 34 (2022) 2200180, https://doi.org/10.1002/adma.202200180  doi: 10.1002/adma.202200180

    15. [15]

      Y. Wan, F. Fang, R. Sun, J. Zhang, K. Chang, Acta Phys. Chim. Sin. 39 (2023) 2212042, https://doi.org/10.3866/pku.whxb202212042  doi: 10.3866/pku.whxb202212042

    16. [16]

      Q. Wang, C. Chen, M. Li, L. Wu, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100147, https://doi.org/10.1016/j.actphy.2025.100147  doi: 10.1016/j.actphy.2025.100147

    17. [17]

      L. -L. Wu, L. -Q. Yang, W. -X. Liu, T. -Y. Hang, X. -F. Yang, Rare. Metals 44 (2025) 4411, https://doi.org/10.1007/s12598-024-03088-8  doi: 10.1007/s12598-024-03088-8

    18. [18]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 67 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8  doi: 10.1007/s40843-023-2754-8

    19. [19]

      Y. -D. Sun, C. Zeng, X. Zhang, Z. -Q. Zhang, B. Yang, S. -Q. Guo, Rare. Metals. 43 (2024) 1488, https://doi.org/10.1007/s12598-023-02569-6  doi: 10.1007/s12598-023-02569-6

    20. [20]

      D. Zhao, Y. Yang, V. Binas, S. Shen, Sci. China Mater. 67 (2024) 1765, https://doi.org/10.1007/s40843-024-2870-1  doi: 10.1007/s40843-024-2870-1

    21. [21]

      Y. X. Leiu, K. M. Lim, Z. -J. Chiah, E. S. -Z. Mah, W. -J. Ong, EcoEnergy 3 (2025) 217, https://doi.org/10.1002/ece2.81  doi: 10.1002/ece2.81

    22. [22]

      K. Wang, T. Yang, G. Dawson, J. Zhang, C. Shao, K. Dai, Chem. Res. Chin. Univ. 41 (2025) 716, https://doi.org/10.1007/s40242-025-4257-z  doi: 10.1007/s40242-025-4257-z

    23. [23]

      D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7 (2024) e12774, https://doi.org/10.1002/eem2.12774  doi: 10.1002/eem2.12774

    24. [24]

      C. Liu, T. Gao, G. Wang, Q. Cheng, K. Wang, Chem. Res. Chin. Univ. 41 (2025) 726, https://doi.org/10.1007/s40242-025-5033-9  doi: 10.1007/s40242-025-5033-9

    25. [25]

      X. Sun, J. Tian, J. Cai, Y. Wang, T. He, X. Qiu, Z. Li, Z. Yao, D. W. Bahnemann, J. Pan, Energy Environ. Mater. 8 (2025) e70012, https://doi.org/10.1002/eem2.70012  doi: 10.1002/eem2.70012

    26. [26]

      Z. Zheng, S. Tian, Y. Feng, S. Zhao, X. Li, S. Wang, Z. He, Chin. J. Catal. 54 (2023) 88, https://doi.org/10.1016/s1872-2067(23)64536-x  doi: 10.1016/s1872-2067(23)64536-x

    27. [27]

      M. Sayed, H. Li, C. Bie, Acta Phys-Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117  doi: 10.1016/j.actphy.2025.100117

    28. [28]

      Z. Guo, S. Yang, M. Liu, Q. Xu, G. Zeng, EcoEnergy 2 (2024) 192, https://doi.org/10.1002/ece2.32  doi: 10.1002/ece2.32

    29. [29]

      L. Guo, J. Gao, M. Li, Y. Xie, H. Chen, S. Wang, Z. Li, X. Wang, W. Zhou, EcoEnergy 1 (2023) 437, https://doi.org/10.1002/ece2.20  doi: 10.1002/ece2.20

    30. [30]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys-Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016  doi: 10.3866/PKU.WHXB202405016

    31. [31]

      B. Guene Lougou, B. -X. Geng, R. -M. Pan, W. Wang, T. -T. Yan, F. -H. Li, H. Zhang, O. S. Djandja, Y. Shuai, M. Tabatabaei, et al., Rare. Metals. 43 (2024) 2913, https://doi.org/10.1007/s12598-024-02638-4  doi: 10.1007/s12598-024-02638-4

    32. [32]

      Z. Liu, F. Jin, X. Li, P. Zhang, Z. Jin, J. Mater. Sci. Technol. 188 (2024) 131, https://doi.org/10.1016/j.jmst.2023.10.060  doi: 10.1016/j.jmst.2023.10.060

    33. [33]

      B. Qi, R. Shen, Z. Ren, Y. Teng, H. Ding, X. Zhang, Y. Zhang, L. Hao, X. Li, J. Mater. Sci. Technol. 232 (2025) 65, https://doi.org/10.1016/j.jmst.2025.03.003  doi: 10.1016/j.jmst.2025.03.003

    34. [34]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065  doi: 10.1002/adfm.202400065

    35. [35]

      S. Biswas, A. Dey, F. A. Rahimi, S. Barman, T. K. Maji, ACS Catal. 13 (2023) 5926, https://doi.org/10.1021/acscatal.2c05203  doi: 10.1021/acscatal.2c05203

    36. [36]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys-Chim. Sin. 40 (2024) 2403032, https://doi.org/10.3866/pku.whxb202403032  doi: 10.3866/pku.whxb202403032

    37. [37]

      C. Yang, Q. Zhang, W. Wang, B. Cheng, J. Yu, S. Cao, Sci. China Mater. 67 (2024) 1830, https://doi.org/10.1007/s40843-024-2789-0  doi: 10.1007/s40843-024-2789-0

    38. [38]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/pku.Whxb202406021  doi: 10.3866/pku.Whxb202406021

    39. [39]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/pku.whxb202312007  doi: 10.3866/pku.whxb202312007

    40. [40]

      H. Yu, X. Zhang, Q. Chen, P. -K. Zhou, F. Xu, H. Wang, X. Chen, Chem. Res. Chin. Univ. 41 (2025) 734, https://doi.org/10.1007/s40242-024-4213-3  doi: 10.1007/s40242-024-4213-3

    41. [41]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/pku.whxb202407012  doi: 10.3866/pku.whxb202407012

    42. [42]

      Z. Yu, D. Zhang, C. Ai, J. Zhang, Q. Xiang, Chin. J. Catal. 67 (2024) 71, https://doi.org/10.1016/s1872-2067(24)60159-2  doi: 10.1016/s1872-2067(24)60159-2

    43. [43]

      H. Ran, X. Liu, L. Ye, J. Fan, B. Zhu, Q. Xu, Y. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089  doi: 10.1016/j.jmst.2024.12.089

    44. [44]

      Z. Liu, Y. Bian, G. Dawson, J. Zhu, K. Dai, Chinese Chem. Lett. 36 (2025) 111272, https://doi.org/10.1016/j.cclet.2025.111272  doi: 10.1016/j.cclet.2025.111272

    45. [45]

      Y. Huanga, J. Zhang, O. Ruzimuradov, S. Mamatkulov, K. Da, J. Low, Compos. Funct. Mate. 1 (2025) 20250103, https://doi.org/10.63823/20250103  doi: 10.63823/20250103

    46. [46]

      M. Lin, M. Luo, Y. Liu, J. Shen, J. Long, Z. Zhang, Chin. J. Catal. 50 (2023) 239, https://doi.org/10.1016/s1872-2067(23)64477-8  doi: 10.1016/s1872-2067(23)64477-8

    47. [47]

      C. Wu, K. Lv, X. Li, Q. Li, Chin. J. Catal. 54 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64542-5  doi: 10.1016/s1872-2067(23)64542-5

    48. [48]

      X. -C. Zhang, S. -L. Cheng, F. -T. Liao, C. Chen, M. -C. Long, Rare Metals 43 (2024) 6144, https://doi.org/10.1007/s12598-024-02752-3  doi: 10.1007/s12598-024-02752-3

    49. [49]

      Y. Guo, L. Wei, Z. Wen, C. Qi, H. Jiang, Acta Phys-Chim. Sin. 40 (2024) 2307004, https://doi.org/10.3866/pku.whxb202307004  doi: 10.3866/pku.whxb202307004

    50. [50]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0  doi: 10.1038/238037a0

    51. [51]

      M. Zhi, H. Tang, M. Wu, C. Ouyang, Z. Hong, N. Wu, Energ. Fuel. 36 (2022) 11359, https://doi.org/10.1021/acs.energyfuels.2c01049  doi: 10.1021/acs.energyfuels.2c01049

    52. [52]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/pku.whxb202406027  doi: 10.3866/pku.whxb202406027

    53. [53]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. Chim. Sin. 39 (2023) 2302051, https://doi.org/10.3866/pku.whxb202302051  doi: 10.3866/pku.whxb202302051

    54. [54]

      T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174 (2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053  doi: 10.1016/j.jmst.2023.03.053

    55. [55]

      Q. Zhu, Q. Xu, M. Du, X. Zeng, G. Zhong, B. Qiu, J. Zhang, Adv. Mater. 34 (2022) 2202929, https://doi.org/10.1002/adma.202202929  doi: 10.1002/adma.202202929

    56. [56]

      X. Xin, Y. Li, Y. Zhang, Y. Wang, X. Chi, Y. Wei, C. Diao, J. Su, R. Wang, P. Guo, et al., Nat. Commun. 15 (2024) 337, https://doi.org/10.1038/s41467-024-44725-1  doi: 10.1038/s41467-024-44725-1

    57. [57]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/s1872-2067(24)60072-0  doi: 10.1016/s1872-2067(24)60072-0

    58. [58]

      Y. Zhou, W. Wang, J. Li, W. Ren, L. Wang, Q. Liu, Chem. Res. Chin. Univ. 41 (2025) 687, https://doi.org/10.1007/s40242-025-5103-z  doi: 10.1007/s40242-025-5103-z

    59. [59]

      A. López-Magano, S. Daliran, A. R. Oveisi, R. Mas-Ballesté, A. Dhakshinamoorthy, J. Alemán, H. Garcia, R. Luque, Adv. Mater. 35 (2023) 2209475, https://doi.org/10.1002/adma.202209475  doi: 10.1002/adma.202209475

    60. [60]

      L. Sun, W. Wang, P. Lu, Q. Liu, L. Wang, H. Tang, Chin. J. Catal. 51 (2023) 90, https://doi.org/10.1016/s1872-2067(23)64492-4  doi: 10.1016/s1872-2067(23)64492-4

    61. [61]

      T. Wang, S. Yu, C. Wang, X. Yin, H. Niu, S. Gao, Energy Environ. Mater. n/a (2025) e70097, https://doi.org/10.1002/eem2.70097  doi: 10.1002/eem2.70097

    62. [62]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. -T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970, https://doi.org/10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    63. [63]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys-Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/pku.whxb202406005  doi: 10.3866/pku.whxb202406005

    64. [64]

      J. Tang, C. Guo, T. Wang, X. Cheng, L. Huo, X. Zhang, C. Huang, Z. Major, Y. Xu, Carbon Neutral. 3 (2024) 557, https://doi.org/10.1002/cnl2.121  doi: 10.1002/cnl2.121

    65. [65]

      H. Zhan, R. Zhou, K. Liu, Z. Ma, P. Wang, S. Zhan, Q. Zhou, Sci. China Mater. 67 (2024) 1740, https://doi.org/10.1007/s40843-024-2900-5  doi: 10.1007/s40843-024-2900-5

    66. [66]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    67. [67]

      Y. Li, S. Wang, X. Wang, EcoEnergy 2 (2024) 205, https://doi.org/10.1002/ece2.35  doi: 10.1002/ece2.35

    68. [68]

      H. Ji, Y. Liu, G. Du, T. Huang, Y. Zhu, Y. Sun, H. Pang, Chem. Res. Chin. Univ. 40 (2024) 943, https://doi.org/10.1007/s40242-024-4179-1  doi: 10.1007/s40242-024-4179-1

    69. [69]

      Z. Sun, P. Yin, S. He, K. Zhang, X. Pan, J. Wang, P. Hao, Z. Zhou, X. Yang, L. Ma, C. Tan, Chem. Res. Chin. Univ. 41 (2025) 519, https://doi.org/10.1007/s40242-025-5034-8  doi: 10.1007/s40242-025-5034-8

    70. [70]

      J. Liu, K. Qi, X. Xiang, A. Jamal Sisi, A. Khataee, L. Xu, Energy Environ. Mater. n/a (2025) e70071, https://doi.org/10.1002/eem2.70071  doi: 10.1002/eem2.70071

    71. [71]

      L. Jiao, Y. Wang, H. -L. Jiang, Q. Xu, Adv. Mater. 30 (2018) 1703663, https://doi.org/10.1002/adma.201703663  doi: 10.1002/adma.201703663

    72. [72]

      C. Liu, H. Liu, J. C. Yu, L. Wu, Z. Li, Chin. J. Catal. 55 (2023) 1, https://doi.org/10.1016/s1872-2067(23)64556-5  doi: 10.1016/s1872-2067(23)64556-5

    73. [73]

      S. -K. Le, Q. -J. Jin, J. -A. Han, H. -C. Zhou, Q. -S. Liu, F. Yang, J. Miao, P. -P. Liu, C. -Z. Zhu, H. -T. Xu, Rare Metals 43 (2024) 1390, https://doi.org/10.1007/s12598-023-02584-7  doi: 10.1007/s12598-023-02584-7

    74. [74]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    75. [75]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229  doi: 10.1002/anie.202414229

    76. [76]

      C. Lu, Y. Gong, D. Zhong, T. Lu, Chem. Res. Chin. Univ. 41 (2025) 655, https://doi.org/10.1007/s40242-025-5074-0  doi: 10.1007/s40242-025-5074-0

    77. [77]

      X. Hao, Y. Lan, S. Gao, X. Yang, R. Cao, Sci. China Mater. 68 (2025) 1145, https://doi.org/10.1007/s40843-024-3266-5  doi: 10.1007/s40843-024-3266-5

    78. [78]

      H. Liu, D. Wang, Z. Yu, Y. Chen, X. Li, R. Zhang, X. Chen, L. Wu, N. Ding, Y. Wang, Y. Zhao, Sci. China Mater. 66 (2023) 2283, https://doi.org/10.1007/s40843-022-2351-y  doi: 10.1007/s40843-022-2351-y

    79. [79]

      F. Auras, L. Ascherl, V. Bon, S. M. Vornholt, S. Krause, M. Döblinger, D. Bessinger, S. Reuter, K. W. Chapman, S. Kaskel, et al., Nat. Chem. 16 (2024) 1373, https://doi.org/10.1038/s41557-024-01527-8  doi: 10.1038/s41557-024-01527-8

    80. [80]

      Y. Yang, B. Liang, J. Kreie, M. Hambsch, Z. Liang, C. Wang, S. Huang, X. Dong, L. Gong, C. Liang, et al., Nature 630 (2024) 878, https://doi.org/10.1038/s41586-024-07505-x  doi: 10.1038/s41586-024-07505-x

    81. [81]

      J. Chang, Z. Zhang, H. Zheng, H. Li, J. Suo, C. Ji, F. Chen, S. Zhang, Z. Wang, V. Valtchev, et al., Nat. Chem. 17 (2025) 571, https://doi.org/10.1038/s41557-024-01715-6  doi: 10.1038/s41557-024-01715-6

    82. [82]

      A. Yao, H. Xu, K. Shao, C. Sun, C. Qin, X. Wang, Z. Su, Nat. Commun. 16 (2025) 1385, https://doi.org/10.1038/s41467-025-56750-9  doi: 10.1038/s41467-025-56750-9

    83. [83]

      A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 310 (2005) 1166, https://doi.org/10.1126/science.1120411  doi: 10.1126/science.1120411

    84. [84]

      C. Zhao, C. Yang, X. Lv, S. Wang, C. Hu, G. Zheng, Q. Han, Adv. Mater. 36 (2024) 2401004, https://doi.org/10.1002/adma.202401004  doi: 10.1002/adma.202401004

    85. [85]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, https://doi.org/10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    86. [86]

      S. Yan, B. Zhang, W. Liu, F. Duan, Y. Li, Y. Ren, S. Lu, M. Du, M. Chen, Chem. Res. Chin. Univ. 41 (2025) 495, https://doi.org/10.1007/s40242-025-5009-9  doi: 10.1007/s40242-025-5009-9

    87. [87]

      F. Tan, Y. Zheng, Z. Zhou, H. Wang, X. Dong, J. Yang, Z. Ou, H. Qi, W. Liu, Z. Zheng, X. Chen, CCS Chem. 4 (2022) 3751, https://doi.org/10.31635/ccschem.022.202101578  doi: 10.31635/ccschem.022.202101578

    88. [88]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014  doi: 10.3866/PKU.WHXB202312014

    89. [89]

      Z. Gu, Z. Shan, Y. Wang, J. Wang, T. Liu, X. Li, Z. Yu, J. Su, G. Zhang, Chin. Chem. Lett. 35 (2024) 108356, https://doi.org/10.1016/j.cclet.2023.108356  doi: 10.1016/j.cclet.2023.108356

    90. [90]

      Y. Yin, Y. Zhang, X. Zhou, B. Gui, W. Wang, W. Jiang, Y. -B. Zhang, J. Sun, C. Wang, Science 386 (2024) 693, https://doi.org/10.1126/science.adr0936  doi: 10.1126/science.adr0936

    91. [91]

      B. Li, Z. Wang, Z. Gao, J. Suo, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q. Fang, Adv. Funct. Mater. 33 (2023) 2300219, https://doi.org/10.1002/adfm.202300219  doi: 10.1002/adfm.202300219

    92. [92]

      Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L. -P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 9 (2018) 576, https://doi.org/10.1038/s41467-018-02889-7  doi: 10.1038/s41467-018-02889-7

    93. [93]

      H. Zhang, Y. Geng, J. Huang, Z. Wang, K. Du, H. Li, Energy Environ. Sci. 16 (2023) 889, https://doi.org/10.1039/D2EE02742A  doi: 10.1039/D2EE02742A

    94. [94]

      G. Yang, Q. Xu, G. Zeng, Electron 2 (2024) e39, https://doi.org/10.1002/elt2.39  doi: 10.1002/elt2.39

    95. [95]

      H. Li, J. Liu, Y. Wang, C. Guo, Y. Pi, Q. Fang, J. Liu, Coordin. Chem. Rev. 523 (2025) 216240, https://doi.org/10.1016/j.ccr.2024.216240  doi: 10.1016/j.ccr.2024.216240

    96. [96]

      Y. -J. Chen, M. Liu, J. Chen, X. Huang, Q. -H. Li, X. -L. Ye, G. -E. Wang, G. Xu, Chem. Sci. 14 (2023) 4824, https://doi.org/10.1039/D3SC00562C  doi: 10.1039/D3SC00562C

    97. [97]

      R. Xue, Y. -S. Liu, S. -L. Huang, G. -Y. Yang, ACS Sensors 8 (2023) 2124, https://doi.org/10.1021/acssensors.3c00269  doi: 10.1021/acssensors.3c00269

    98. [98]

      K. Xu, N. Huang, Chem. Res. Chin. Univ. 38 (2022) 339, https://doi.org/10.1007/s40242-022-1476-4  doi: 10.1007/s40242-022-1476-4

    99. [99]

      L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 5 (2014) 2789, https://doi.org/10.1039/c4sc00016a  doi: 10.1039/c4sc00016a

    100. [100]

      X. Zhang, C. Gao, Y. Zhou, R. Chen, X. Guan, Z. Shen, B. Hu, Q. -H. Xu, Sci. China. Chem. 68 (2025) 3277, https://doi.org/10.1007/s11426-024-2446-7  doi: 10.1007/s11426-024-2446-7

    101. [101]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005  doi: 10.1016/j.jmst.2025.03.005

    102. [102]

      H. Huang, Q. Lin, Q. Niu, J. Ning, L. Li, J. Bi, Y. Yu, Chin. J. Catal. 60 (2024) 201, https://doi.org/10.1016/s1872-2067(24)60027-6  doi: 10.1016/s1872-2067(24)60027-6

    103. [103]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028  doi: 10.1016/j.jmst.2023.06.028

    104. [104]

      Y. -L. Li, S. -L. Huang, G. -Y. Yang, Sci. China. Chem. 67 (2024) 3719, https://doi.org/10.1007/s11426-024-2043-2  doi: 10.1007/s11426-024-2043-2

    105. [105]

      S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 140 (2018) 14614, https://doi.org/10.1021/jacs.8b09705  doi: 10.1021/jacs.8b09705

    106. [106]

      C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, et al., J. Am. Chem. Soc. 142 (2020) 20107, https://doi.org/10.1021/jacs.0c09684  doi: 10.1021/jacs.0c09684

    107. [107]

      H. Ran, Q. Xu, Y. Yang, H. Li, J. Fan, G. Liu, L. Zhang, J. Zou, H. Jin, S. Wang, ACS Catal. 14 (2024) 11675, https://doi.org/10.1021/acscatal.4c02738  doi: 10.1021/acscatal.4c02738

    108. [108]

      M. Xu, R. Shen, Y. Mo, G. Liang, S. Li, P. Zhang, X. Chen, Y. Li, X. Li, InfoScience n/a (2025) e70001, https://doi.org/10.1002/inc2.70001  doi: 10.1002/inc2.70001

    109. [109]

      Y. Qian, D. Li, Y. Han, H. -L. Jiang, J. Am. Chem. Soc. 142 (2020) 20763, https://doi.org/10.1021/jacs.0c09727  doi: 10.1021/jacs.0c09727

    110. [110]

      J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/d4ee01808g  doi: 10.1039/d4ee01808g

    111. [111]

      Y. Yan, L. Hao, Z. Ren, R. Shen, G. Liang, P. Zhang, Y. Teng, D. Xu, X. Li, J. Mater. Sci. Technol. 249 (2026) 305, https://doi.org/10.1016/j.jmst.2025.06.015  doi: 10.1016/j.jmst.2025.06.015

    112. [112]

      Z. Alsudairy, N. Brown, A. Campbell, A. Ambus, B. Brown, K. Smith-Petty, X. Li, Mater. Chem. Front. 7 (2023) 3298, https://doi.org/10.1039/D3QM00188A  doi: 10.1039/D3QM00188A

    113. [113]

      K. Prakash, R. Deka, S. M. Mobin, Inorg. Chem. Front. 11 (2024) 6711, https://doi.org/10.1039/D4QI01480D  doi: 10.1039/D4QI01480D

    114. [114]

      J. G. Doremus, B. Lotsi, A. Sharma, P. L. McGrier, Nanoscale 16 (2024) 21619, https://doi.org/10.1039/D4NR03204G  doi: 10.1039/D4NR03204G

    115. [115]

      F. Chen, H. Zheng, Y. Yusran, H. Li, S. Qiu, Q. Fang, Chem. Soc. Rev. 54 (2025) 484, https://doi.org/10.1039/D4CS00703D  doi: 10.1039/D4CS00703D

    116. [116]

      I. Ahamd, Z. U. D. Babar, Y. Zhang, A. Al-Qattan, S. B. Ahmed, G. Li, J. Mater. Chem. A 13 (2025) 15517, https://doi.org/10.1039/D5TA01232E  doi: 10.1039/D5TA01232E

    117. [117]

      W. Zhao, L. Sun, L. Yang, R. Zhang, G. Ren, S. Wang, H. Wu, X. Kang, W. -Q. Deng, C. Liu, Sci. China Mater. 68 (2025) 165, https://doi.org/10.1007/s40843-024-3168-3  doi: 10.1007/s40843-024-3168-3

    118. [118]

      S. Zhong, Y. Wang, M. Xie, Y. Wu, J. Li, J. Peng, L. Yuan, M. Zhai, W. Shi, Chin. Chem. Lett. 36 (2025) 110312, https://doi.org/10.1016/j.cclet.2024.110312  doi: 10.1016/j.cclet.2024.110312

    119. [119]

      Q. Liao, W. Xu, X. Huang, C. Ke, Q. Zhang, K. Xi, J. Xie, Sci. China. Chem. 63 (2020) 707, https://doi.org/10.1007/s11426-019-9696-3  doi: 10.1007/s11426-019-9696-3

    120. [120]

      S. Liu, J. Guo, Chem. Res. Chin. Univ. 38 (2022) 373, https://doi.org/10.1007/s40242-022-2007-z  doi: 10.1007/s40242-022-2007-z

    121. [121]

      X. Dong, F. Zhang, Y. Wang, F. Huang, X. Lang, Appl. Catal. B Environ. Energy 345 (2024) 123660, https://doi.org/10.1016/j.apcatb.2023.123660  doi: 10.1016/j.apcatb.2023.123660

    122. [122]

      X. Zhan, Y. Jin, B. Han, Z. Zhou, B. Chen, X. Ding, F. Li, Z. Suo, R. Jiang, D. Qi, et al., Chin. J. Catal. 69 (2025) 271, https://doi.org/10.1016/s1872-2067(24)60196-8  doi: 10.1016/s1872-2067(24)60196-8

    123. [123]

      X. Liu, R. Qi, S. Li, W. Liu, Y. Yu, J. Wang, S. Wu, K. Ding, Y. Yu, J. Am. Chem. Soc. 144 (2022) 23396, https://doi.org/10.1021/jacs.2c09369  doi: 10.1021/jacs.2c09369

    124. [124]

      W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 5 (2020) 869, https://doi.org/10.1038/s41578-020-0223-z  doi: 10.1038/s41578-020-0223-z

    125. [125]

      H. Wang, W. Liu, X. He, P. Zhang, X. Zhang, Y. Xie, J. Am. Chem. Soc. 142 (2020) 14007, https://doi.org/10.1021/jacs.0c06966  doi: 10.1021/jacs.0c06966

    126. [126]

      A. Sugie, K. Nakano, K. Tajima, I. Osaka, H. Yoshida, J. Phys. Chem. Lett. 14 (2023) 11412, https://doi.org/10.1021/acs.jpclett.3c02863  doi: 10.1021/acs.jpclett.3c02863

    127. [127]

      S. Kashani, J. J. Rech, T. Liu, K. Baustert, A. Ghaffari, I. Angunawela, Y. Xiong, A. Dinku, W. You, K. Graham, H. Ade, Adv. Energy Mater. 14 (2024) 2302837, https://doi.org/10.1002/aenm.202302837  doi: 10.1002/aenm.202302837

    128. [128]

      M. -Y. Heng, H. -L. Shao, J. -T. Sun, Q. Huang, S. -L. Shen, G. -Z. Yang, Y. -H. Xue, S. -N. Xiao, Rare Metals 44 (2025) 1108, https://doi.org/10.1007/s12598-024-03000-4  doi: 10.1007/s12598-024-03000-4

    129. [129]

      Y. Shuang, Y. Zhang, H. Wang, L. Li, X. Hao, Z. Ma, S. Wang, J. Wang, F. Wang, X. Yang, et al., Adv. Mater. 37 (2025) 2500468, https://doi.org/10.1002/adma.202500468  doi: 10.1002/adma.202500468

    130. [130]

      Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 6 (2023) 574, https://doi.org/10.1038/s41929-023-00972-x  doi: 10.1038/s41929-023-00972-x

    131. [131]

      J. Wang, W. Liao, Y. Tan, O. Henrotte, Y. Kang, K. Liu, J. Fu, Z. Lin, L. Chai, E. Cortes, M. Liu, Chem. Soc. Rev. 54 (2025) 6553, https://doi.org/10.1039/d5cs00512d  doi: 10.1039/d5cs00512d

    132. [132]

      Z. Liu, Y. Zhang, Y. Wu, B. Yang, Z. Zhou, Z. Jin, J. Mater. Sci. Technol. 233 (2025) 48, https://doi.org/10.1016/j.jmst.2025.01.040  doi: 10.1016/j.jmst.2025.01.040

    133. [133]

      Z. Lin, X. Yu, Z. Zhao, N. Ding, C. Wang, K. Hu, Y. Zhu, J. Guo, Nat. Commun. 16 (2025) 1940, https://doi.org/10.1038/s41467-025-57166-1  doi: 10.1038/s41467-025-57166-1

    134. [134]

      P. Sun, J. Zhang, Y. Song, Z. Mo, Z. Chen, H. Xu, Acta Phys. Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/pku.whxb202311001  doi: 10.3866/pku.whxb202311001

    135. [135]

      M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202200413, https://doi.org/10.1002/anie.202200413  doi: 10.1002/anie.202200413

    136. [136]

      Y. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 62 (2023) e202305355, https://doi.org/10.1002/anie.202305355  doi: 10.1002/anie.202305355

    137. [137]

      J. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y. -Y. Liu, et al., Angew. Chem. Int. Ed. 62 (2023) e202216719, https://doi.org/10.1002/anie.202216719  doi: 10.1002/anie.202216719

    138. [138]

      J. -Y. Yue, L. -P. Song, Y. -F. Fan, Z. -X. Pan, P. Yang, Y. Ma, Q. Xu, B. Tang, Angew. Chem. Int. Ed. 62 (2023) e202309624, https://doi.org/10.1002/anie.202309624  doi: 10.1002/anie.202309624

    139. [139]

      Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao, L. Jiang, C. Zhang, X. Yuan, E. Huixiang Ang, H. Wang, Angew. Chem. Int. Ed. 62 (2023) e202309480, https://doi.org/10.1002/anie.202309480  doi: 10.1002/anie.202309480

    140. [140]

      Q. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li, K. Xi, Angew. Chem. Int. Ed. 62 (2023) e202310556, https://doi.org/10.1002/anie.202310556  doi: 10.1002/anie.202310556

    141. [141]

      Y. Zhang, L. Cao, G. Bai, X. Lan, Small 19 (2023) 2300035, https://doi.org/10.1002/smll.202300035  doi: 10.1002/smll.202300035

    142. [142]

      S. Guo, K. Zhao, L. Liang, Z. Li, B. Han, X. Ou, S. Yao, Z. Lin, Z. Dong, Y. Liu, L. et al., Angew. Chem. Int. Ed. 64 (2025) e202509141, https://doi.org/10.1002/anie.202509141  doi: 10.1002/anie.202509141

    143. [143]

      X. Zhang, Z. Xiao, L. Jiao, H. Wu, Y. -X. Tan, J. Lin, D. Yuan, Y. Wang, Angew. Chem. Int. Ed. 63 (2024) e202408697, https://doi.org/10.1002/anie.202408697  doi: 10.1002/anie.202408697

    144. [144]

      M. Yu, W. Chen, Q. Lin, L. Li, Z. Liu, J. Bi, Y. Yu, Angew. Chem. Int. Ed. 64 (2025) e202418422, https://doi.org/10.1002/anie.202418422  doi: 10.1002/anie.202418422

    145. [145]

      W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 59 (2020) 16902, https://doi.org/10.1002/anie.202006925  doi: 10.1002/anie.202006925

    146. [146]

      V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, B. V. Lotsch, Nat. Commun. 6 (2015) 8508, https://doi.org/10.1038/ncomms9508  doi: 10.1038/ncomms9508

    147. [147]

      H. -H. Sun, Z. -B. Zhou, Y. Fu, Q. -Y. Qi, Z. -X. Wang, S. Xu, X. Zhao, Angew. Chem. Int. Ed. 63 (2024) e202409250, https://doi.org/10.1002/anie.202409250  doi: 10.1002/anie.202409250

    148. [148]

      D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 62 (2023) e202217479, https://doi.org/10.1002/anie.202217479  doi: 10.1002/anie.202217479

    149. [149]

      Z. Zhang, Q. Zhang, Y. Hou, J. Li, S. Zhu, H. Xia, H. Yue, X. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411546, https://doi.org/10.1002/anie.202411546  doi: 10.1002/anie.202411546

    150. [150]

      X. Luo, Y. Chen, J. -T. Lin, J. Luo, R. -Q. Xia, N. Yin, Y. -M. Lin, H. Duan, S. -B. Ren, Q. Gao, et al., Chin. J. Chem. 43 (2025) 1199, https://doi.org/10.1002/cjoc.202401245  doi: 10.1002/cjoc.202401245

    151. [151]

      Y. Zhang, Y. Wu, H. Ma, Y. Gao, X. Fan, Y. Zhao, F. Kang, Z. Li, Y. Liu, Q. Zhang, Small 21 (2025) 2500674, https://doi.org/10.1002/smll.202500674  doi: 10.1002/smll.202500674

    152. [152]

      L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li, Sci. China Mater. 67 (2024) 504, https://doi.org/10.1007/s40843-023-2747-6  doi: 10.1007/s40843-023-2747-6

    153. [153]

      C. Chen, K. -L. He, J. -Q. Li, Y. Tu, Y. -H. Liang, Z. -M. Huang, Q. -T. Zhang, Rare Metals 44 (2025) 4507, https://doi.org/10.1007/s12598-025-03249-3  doi: 10.1007/s12598-025-03249-3

    154. [154]

      Z. -W. Deng, Y. Liu, J. Lin, W. -X. Chen, Rare Metals 43 (2024) 4844, https://doi.org/10.1007/s12598-024-02727-4  doi: 10.1007/s12598-024-02727-4

    155. [155]

      H. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 10 (2020) 6579, https://doi.org/10.1021/acscatal.0c01459  doi: 10.1021/acscatal.0c01459

    156. [156]

      H. Zhang, Z. Lin, P. Kidkhunthod, J. Guo, Angew. Chem. Int. Ed. 62 (2023) e202217527, https://doi.org/10.1002/anie.202217527  doi: 10.1002/anie.202217527

    157. [157]

      L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 144 (2022) 17097, https://doi.org/10.1021/jacs.2c06920  doi: 10.1021/jacs.2c06920

    158. [158]

      V. Hasija, S. Patial, P. Raizada, A. Aslam Parwaz Khan, A. M. Asiri, Q. Van Le, V. -H. Nguyen, P. Singh, Coordin. Chem. Rev. 452 (2022) 214298, https://doi.org/10.1016/j.ccr.2021.214298  doi: 10.1016/j.ccr.2021.214298

    159. [159]

      Y. Cui, C. Ren, M. Wu, Y. Chen, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 146 (2024) 29169, https://doi.org/10.1021/jacs.4c11516  doi: 10.1021/jacs.4c11516

    160. [160]

      P. Fu, C. Chen, C. Wu, B. Meng, Q. Yue, T. Chen, W. Yin, X. Chi, X. Yu, R. Li, et al., Angew. Chem. Int. Ed. 64 (2025) e202415202, https://doi.org/10.1002/anie.202415202  doi: 10.1002/anie.202415202

    161. [161]

      L. Fang, S. Qiu, H. Xu, T. Ye, L. Li, Adv. Funct. Mater. n/a (2025) 2504676, https://doi.org/10.1002/adfm.202504676  doi: 10.1002/adfm.202504676

    162. [162]

      H. Ben, W. Du, J. Zhao, Y. Wang, Y. Wu, F. Lin, Y. Lei, S. Zhou, J. Pu, M. Ye, et al., Coord. Chem. Rev. 517 (2024) 216003, https://doi.org/10.1016/j.ccr.2024.216003  doi: 10.1016/j.ccr.2024.216003

    163. [163]

      Y. Fu, Y. Li, W. Zhang, C. Luo, L. Jiang, H. Ma, Chem. Res. Chin. Univ. 38 (2022) 296, https://doi.org/10.1007/s40242-022-1448-8  doi: 10.1007/s40242-022-1448-8

    164. [164]

      Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S. -H. Lee, W. Zhang, Angew. Chem. Int. Ed. 55 (2016) 1737, https://doi.org/10.1002/anie.201509014  doi: 10.1002/anie.201509014

    165. [165]

      Z. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu, W. Yang, C. Wang, K. A. I. Zhang, J. Guo, Angew. Chem. Int. Ed. 60 (2021) 9642, https://doi.org/10.1002/anie.202016618  doi: 10.1002/anie.202016618

    166. [166]

      F. Hao, C. Yang, X. Lv, F. Chen, S. Wang, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 62 (2023) e202315456, https://doi.org/10.1002/anie.202315456  doi: 10.1002/anie.202315456

    167. [167]

      Y. Fu, Y. Wu, S. Chen, W. Zhang, Y. Zhang, T. Yan, B. Yang, H. Ma, ACS Nano 15 (2021) 19743, https://doi.org/10.1021/acsnano.1c07178  doi: 10.1021/acsnano.1c07178

    168. [168]

      H. Ben, G. Yan, H. Liu, C. Ling, Y. Fan, X. Zhang, Adv. Funct. Mater. 32 (2022) 2104519, https://doi.org/10.1002/adfm.202104519  doi: 10.1002/adfm.202104519

    169. [169]

      H. Ji, D. Qiao, G. Yan, B. Dong, Y. Feng, X. Qu, Y. Jiang, X. Zhang, ACS Appl. Mater. Inter. 15 (2023) 37845, https://doi.org/10.1021/acsami.3c08250  doi: 10.1021/acsami.3c08250

    170. [170]

      Z. Zhang, Y. Xu, J. Am. Chem. Soc. 145 (2023) 25222, https://doi.org/10.1021/jacs.3c08220  doi: 10.1021/jacs.3c08220

    171. [171]

      G. Fu, D. Yang, S. Xu, S. Li, Y. Zhao, H. Yang, D. Wu, P. S. Petkov, Z. -A. Lan, X. Wang, T. Zhang, J. Am. Chem. Soc. 146 (2024) 1318, https://doi.org/10.1021/jacs.3c08755  doi: 10.1021/jacs.3c08755

    172. [172]

      H. Yu, F. Zhang, Q. Chen, P. -K. Zhou, W. Xing, S. Wang, G. Zhang, Y. Jiang, X. Chen, Angew. Chem. Int. Ed. 63 (2024) e202402297, https://doi.org/10.1002/anie.202402297  doi: 10.1002/anie.202402297

    173. [173]

      E. Zhou, F. Wang, X. Zhang, Y. Hui, Y. Wang, Angew. Chem. Int. Ed. 63 (2024) e202400999, https://doi.org/10.1002/anie.202400999  doi: 10.1002/anie.202400999

    174. [174]

      Y. Hou, P. Zhou, F. Liu, Y. Lu, H. Tan, Z. Li, M. Tong, J. Ni, Angew. Chem. Int. Ed. 63 (2024) e202318562, https://doi.org/10.1002/anie.202318562  doi: 10.1002/anie.202318562

    175. [175]

      X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. -H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 10 (2018) 1180, https://doi.org/10.1038/s41557-018-0141-5  doi: 10.1038/s41557-018-0141-5

    176. [176]

      J. Su, B. Liu, B. Lu, X. Sun, Y. Guo, W. Chi, Y. Yang, X. Chen, H. Zhao, Y. Wang, et al., Appl. Catal. B Environ. Energy 371 (2025) 125263, https://doi.org/10.1016/j.apcatb.2025.125263  doi: 10.1016/j.apcatb.2025.125263

    177. [177]

      L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 63 (2024) e202320218, https://doi.org/10.1002/anie.202320218  doi: 10.1002/anie.202320218

    178. [178]

      C. Sun, Y. Han, H. Guo, R. Zhao, Y. Liu, Z. Lin, Z. Xiao, Z. Sun, M. Luo, S. Guo, Adv. Mater. 37 (2025) 2502990, https://doi.org/10.1002/adma.202502990  doi: 10.1002/adma.202502990

    179. [179]

      Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H. -L. Jiang, Nat. Commun. 14 (2023) 3083, https://doi.org/10.1038/s41467-023-38884-w  doi: 10.1038/s41467-023-38884-w

    180. [180]

      Z. Chen, J. Guo, F. -H. Song, S. -D. Wang, S. A. C. Carabineiro, S. -X. Ouyang, L. -L. Wen, ACS Catal. 15 (2025) 8284, https://doi.org/10.1021/acscatal.5c01163  doi: 10.1021/acscatal.5c01163

    181. [181]

      H. Liu, X. Yan, W. Chen, Z. Xie, S. Li, W. Chen, T. Zhang, G. Xing, L. Chen, Sci. China. Chem. 64 (2021) 827, https://doi.org/10.1007/s11426-020-9931-4  doi: 10.1007/s11426-020-9931-4

    182. [182]

      W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y. -B. Zhang, K. Wen, Angew. Chem. Int. Ed. 60 (2021) 1869, https://doi.org/10.1002/anie.202014408  doi: 10.1002/anie.202014408

    183. [183]

      C. Li, J. Liu, H. Li, K. Wu, J. Wang, Q. Yang, Nat. Commun. 13 (2022) 2357, https://doi.org/10.1038/s41467-022-30035-x  doi: 10.1038/s41467-022-30035-x

    184. [184]

      C. Shu, X. Yang, L. Liu, X. Hu, R. Sun, X. Yang, A. I. Cooper, B. Tan, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202403926, https://doi.org/10.1002/anie.202403926  doi: 10.1002/anie.202403926

    185. [185]

      X. -C. Li, H. Sun, Z. Wang, W. Yang, Q. Wang, C. Wu, J. Chen, Q. Jiang, L. -J. He, Q. Xue, et al., Nat. Commun. 16 (2025) 3321, https://doi.org/10.1038/s41467-025-58534-7  doi: 10.1038/s41467-025-58534-7

    186. [186]

      S. Sun, C. -Q. Han, J. -X. Guo, L. Wang, Z. -Y. Wang, G. Lu, X. -Y. Liu, J. Mater. Chem. C 13 (2025) 2814, https://doi.org/10.1039/D4TC03991B  doi: 10.1039/D4TC03991B

    187. [187]

      Y. Yao, C. Zhu, R. Liu, Q. Fang, S. Song, B. Chen, Y. Shen, Small 20 (2024) 2404885, https://doi.org/10.1002/smll.202404885  doi: 10.1002/smll.202404885

    188. [188]

      C. E. Pelkowski, A. Natraj, C. D. Malliakas, D. W. Burke, M. I. Bardot, Z. Wang, H. Li, W. R. Dichtel, J. Am. Chem. Soc. 145 (2023) 21798, https://doi.org/10.1021/jacs.3c03868  doi: 10.1021/jacs.3c03868

    189. [189]

      Z. Xie, X. Chen, W. Wang, X. Ke, X. Zhang, S. Wang, X. Wu, J. C. Yu, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202410179, https://doi.org/10.1002/anie.202410179  doi: 10.1002/anie.202410179

    190. [190]

      Y. Song, T. Wang, M. Li, X. Dou, S. Huang, J. Zhao, R. Yang, C. Li, Small 21 (2025) 2505421, https://doi.org/10.1002/smll.202505421  doi: 10.1002/smll.202505421

    191. [191]

      P. Wu, M. Givskov, T. E. Nielsen, Chem. Rev. 119 (2019) 11245, https://doi.org/10.1021/acs.chemrev.9b00214  doi: 10.1021/acs.chemrev.9b00214

    192. [192]

      Q. Guan, L. -L. Zhou, Y. -B. Dong, J. Am. Chem. Soc. 145 (2023) 1475, https://doi.org/10.1021/jacs.2c11071  doi: 10.1021/jacs.2c11071

    193. [193]

      P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A. D. Nguyen, M. Schwarze, J. Gabriel, C. Penschke, S. Du, et al., Adv. Energy Mater. n/a (2025) 2501193, https://doi.org/10.1002/aenm.202501193  doi: 10.1002/aenm.202501193

    194. [194]

      K. -H. Xie, G. -B. Wang, F. Huang, F. Zhao, J. -L. Kan, Z. -Z. Chen, L. Cai, S. -L. Han, Y. Geng, Y. -B. Dong, Nat. Commun. 16 (2025) 3493, https://doi.org/10.1038/s41467-025-58839-7  doi: 10.1038/s41467-025-58839-7

    195. [195]

      P. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 62 (2023) e202304349, https://doi.org/10.1002/anie.202304349  doi: 10.1002/anie.202304349

    196. [196]

      P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 145 (2023) 2975, https://doi.org/10.1021/jacs.2c11454  doi: 10.1021/jacs.2c11454

    197. [197]

      G. -B. Wang, Y. -J. Wang, J. -L. Kan, K. -H. Xie, H. -P. Xu, F. Zhao, M. -C. Wang, Y. Geng, Y. -B. Dong, J. Am. Chem. Soc. 145 (2023) 4951, https://doi.org/10.1021/jacs.2c13541  doi: 10.1021/jacs.2c13541

    198. [198]

      Z. -C. Zhang, P. -L. Wang, Y. -F. Sun, T. Yang, S. -Y. Ding, W. Wang, J. Am. Chem. Soc. 146 (2024) 4822, https://doi.org/10.1021/jacs.3c13172  doi: 10.1021/jacs.3c13172

    199. [199]

      J. Yang, S. Ghosh, J. Roeser, A. Acharjya, C. Penschke, Y. Tsutsui, J. Rabeah, T. Wang, S. Y. Djoko Tameu, M. -Y. Ye, et al., Nat. Commun. 13 (2022) 6317, https://doi.org/10.1038/s41467-022-33875-9  doi: 10.1038/s41467-022-33875-9

    200. [200]

      W. Dong, Z. Qin, K. Wang, Y. Xiao, X. Liu, S. Ren, L. Li, Angew. Chem. Int. Ed. 62 (2023) e202216073, https://doi.org/10.1002/anie.202216073  doi: 10.1002/anie.202216073

    201. [201]

      W. Zhang, M. Sun, J. Cheng, X. Wu, H. Xu, Adv. Mater. 37 (2025) 2500913, https://doi.org/10.1002/adma.202500913  doi: 10.1002/adma.202500913

    202. [202]

      J. -P. Jeon, Y. J. Kim, S. H. Joo, H. -J. Noh, S. K. Kwak, J. -B. Baek, Angew. Chem. Int. Ed. 62 (2023) e202217416, https://doi.org/10.1002/anie.202217416  doi: 10.1002/anie.202217416

    203. [203]

      H. He, R. Shen, Y. Yan, D. Chen, Z. Liu, L. Hao, X. Zhang, P. Zhang, X. Li, Chem. Sci. 15 (2024) 20002, https://doi.org/10.1039/D4SC07028C  doi: 10.1039/D4SC07028C

    204. [204]

      X. -X. Wang, C. -R. Zhang, R. -X. Bi, Z. -H. Peng, A. -M. Song, R. Zhang, H. -X. He, J. -X. Qi, J. -W. Gong, C. -P. Niu, et al., Adv. Funct. Mater. 35 (2025) 2421623, https://doi.org/10.1002/adfm.202421623  doi: 10.1002/adfm.202421623

    205. [205]

      E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang, D. Jiang, Chem 5 (2019) 1632, https://doi.org/10.1016/j.chempr.2019.04.015  doi: 10.1016/j.chempr.2019.04.015

    206. [206]

      K. Huang, J. Bai, R. Shen, X. Li, C. Qin, P. Zhang, X. Li, Adv. Funct. Mater. 33 (2023) 2307300, https://doi.org/10.1002/adfm.202307300  doi: 10.1002/adfm.202307300

    207. [207]

      R. Shen, C. Huang, L. Hao, G. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4  doi: 10.1038/s41467-025-57662-4

    208. [208]

      R. Shen, C. Qin, L. Hao, X. Li, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2305397, https://doi.org/10.1002/adma.202305397  doi: 10.1002/adma.202305397

    209. [209]

      S. Xie, R. Liu, N. Liu, H. Xu, X. Chen, X. Wang, D. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202416771, https://doi.org/10.1002/anie.202416771  doi: 10.1002/anie.202416771

    210. [210]

      B. Zhang, K. Li, R. Li, S. Wang, L. Kang, J. Mater. Sci. Technol. 206 (2025) 257, https://doi.org/10.1016/j.jmst.2024.04.028  doi: 10.1016/j.jmst.2024.04.028

    211. [211]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    212. [212]

      R. Shen, N. Li, C. Qin, X. Li, P. Zhang, X. Li, J. Tang, Adv. Funct. Mater. 33 (2023) 2301463, https://doi.org/10.1002/adfm.202301463  doi: 10.1002/adfm.202301463

    213. [213]

      G. Ding, Z. Wang, J. Zhang, P. Wang, L. Chen, G. Liao, EcoEnergy 2 (2024) 22, https://doi.org/10.1002/ece2.25  doi: 10.1002/ece2.25

    214. [214]

      Y. Dong, B. Wang, D. Xie, J. Lv, J. Cui, Z. Bao, G. Xu, W. Shen, EcoEnergy 2 (2024) 489, https://doi.org/10.1002/ece2.54  doi: 10.1002/ece2.54

    215. [215]

      R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649, https://doi.org/10.1002/adma.202303649  doi: 10.1002/adma.202303649

    216. [216]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668  doi: 10.1002/adma.202107668

    217. [217]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094  doi: 10.1016/j.jmst.2024.12.094

    218. [218]

      J. Yu, X. Li, J. Fu, K. Dai, Sci. China Mater. 67 (2024) 379, https://doi.org/10.1007/s40843-024-2779-5  doi: 10.1007/s40843-024-2779-5

    219. [219]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600  doi: 10.1002/adma.202310600

    220. [220]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys-Chim. Sin. 41 (2025), https://doi.org/10.1016/j.actphy.2025.100065  doi: 10.1016/j.actphy.2025.100065

    221. [221]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288  doi: 10.1002/adma.202400288

    222. [222]

      Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S. -W. Yang, X. Liu, J. Am. Chem. Soc. 145 (2023) 8364, https://doi.org/10.1021/jacs.2c11893  doi: 10.1021/jacs.2c11893

    223. [223]

      X. Ding, T. Wang, Q. Zhi, T. Zheng, Y. Jin, H. Liu, H. Wang, D. Qi, P. A. Stuzhin, J. Jiang, Sci. Bull. 70 (2025) 464, https://doi.org/10.1016/j.scib.2024.11.024  doi: 10.1016/j.scib.2024.11.024

    224. [224]

      S. Mao, Y. Zhang, Y. Wang, S. Zhang, S. Liu, W. Chen, J. Zhou, X. Li, Adv. Mater. n/a (2025) 2507668, https://doi.org/10.1002/adma.202507668  doi: 10.1002/adma.202507668

    225. [225]

      L. Hao, R. Shen, G. Liang, M. Kang, C. Huang, P. Zhang, X. Li, Appl. Catal. B Environ. Energy 348 (2024) 123837, https://doi.org/10.1016/j.apcatb.2024.123837  doi: 10.1016/j.apcatb.2024.123837

    226. [226]

      J. Bai, M. Zhang, F. Si, Y. Li, G. Liang, T. Hou, Y. Li, Adv. Funct. Mater. 35 (2025) 2420218, https://doi.org/10.1002/adfm.202420218  doi: 10.1002/adfm.202420218

    227. [227]

      Y. Xu, J. -P. Dong, L. Wang, R. -L. Geng, R. Wang, Y. -N. Si, S. -Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 64 (2025) e202501391, https://doi.org/10.1002/anie.202501391  doi: 10.1002/anie.202501391

    228. [228]

      Q. Xu, J. Han, F. Tian, X. Zhao, J. Rong, J. Zhang, P. She, J. -S. Qin, H. Rao, J. Am. Chem. Soc. 147 (2025) 10587, https://doi.org/10.1021/jacs.5c00432  doi: 10.1021/jacs.5c00432

    229. [229]

      K. Maeda, K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655, https://doi.org/10.1021/jz1007966  doi: 10.1021/jz1007966

    230. [230]

      W. Li, J. -J. Li, Z. -F. Liu, H. -Y. Ma, P. -F. Fang, R. Xiong, J. -H. Wei, Rare Metals 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5  doi: 10.1007/s12598-023-02419-5

    231. [231]

      T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387, https://doi.org/10.1038/s41929-019-0242-6  doi: 10.1038/s41929-019-0242-6

    232. [232]

      Y. Li, X. Song, G. Zhang, L. Wang, Y. Liu, W. Chen, L. Chen, ChemSusChem 15 (2022) e202200901, https://doi.org/10.1002/cssc.202200901  doi: 10.1002/cssc.202200901

    233. [233]

      S. Ma, T. Deng, Z. Li, Z. Zhang, J. Jia, Q. Li, G. Wu, H. Xia, S. -W. Yang, X. Liu, Angew. Chem. Int. Ed. 61 (2022) e202208919, https://doi.org/10.1002/anie.202208919  doi: 10.1002/anie.202208919

    234. [234]

      J. Cheng, Y. Wu, W. Zhang, J. Zhang, L. Wang, M. Zhou, F. Fan, X. Wu, H. Xu, Adv. Mater. 36 (2024) 2305313, https://doi.org/10.1002/adma.202305313  doi: 10.1002/adma.202305313

    235. [235]

      S. Yang, H. Lv, H. Zhong, D. Yuan, X. Wang, R. Wang, Angew. Chem. Int. Ed. 61 (2022) e202115655, https://doi.org/10.1002/anie.202115655  doi: 10.1002/anie.202115655

    236. [236]

      Y. Zhong, W. Dong, S. Ren, L. Li, Adv. Mater. 36 (2024) 2308251, https://doi.org/10.1002/adma.202308251  doi: 10.1002/adma.202308251

    237. [237]

      Y. Li, L. Yang, H. He, L. Sun, H. Wang, X. Fang, Y. Zhao, D. Zheng, Y. Qi, Z. Li, W. Deng, Nat. Commun. 13 (2022) 1355, https://doi.org/10.1038/s41467-022-29076-z  doi: 10.1038/s41467-022-29076-z

    238. [238]

      F. Liu, Y. He, X. Liu, Z. Wang, H. -L. Liu, X. Zhu, C. -C. Hou, Y. Weng, Q. Zhang, Y. Chen, ACS Catal. 12 (2022) 9494, https://doi.org/10.1021/acscatal.2c02173  doi: 10.1021/acscatal.2c02173

    239. [239]

      F. Ma, Q. Tang, S. Xi, G. Li, T. Chen, X. Ling, Y. Lyu, Y. Liu, X. Zhao, Y. Zhou, J. Wang, Chin. J. Catal. 48 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64422-5  doi: 10.1016/s1872-2067(23)64422-5

    240. [240]

      J. Bai, R. Shen, G. Liang, C. Qin, D. Xu, H. Hu, X. Li, Chin. J. Catal. 59 (2024) 225, https://doi.org/10.1016/s1872-2067(23)64627-3  doi: 10.1016/s1872-2067(23)64627-3

    241. [241]

      M. Wang, Y. Li, D. Yan, H. Hu, Y. Song, X. Su, J. Sun, S. Xiao, Y. Gao, Chin. J. Catal. 65 (2024) 103, https://doi.org/10.1016/s1872-2067(24)60113-0  doi: 10.1016/s1872-2067(24)60113-0

    242. [242]

      M. Wang, Z. Wang, M. Shan, J. Wang, Z. Qiu, J. Song, Z. Li, Chem. Mater. 35 (2023) 5368, https://doi.org/10.1021/acs.chemmater.3c00556  doi: 10.1021/acs.chemmater.3c00556

    243. [243]

      Z. Zhao, X. Chen, B. Li, S. Zhao, L. Niu, Z. Zhang, Y. Chen, Adv. Sci. 9 (2022) 2203832, https://doi.org/10.1002/advs.202203832  doi: 10.1002/advs.202203832

    244. [244]

      S. Ma, Z. Li, Y. Hou, J. Li, Z. Zhang, T. Deng, G. Wu, R. Wang, S. -W. Yang, X. Liu, Angew. Chem. Int. Ed. 64 (2025) e202501869, https://doi.org/10.1002/anie.202501869  doi: 10.1002/anie.202501869

    245. [245]

      Z. Luo, S. Zhu, H. Xue, W. Yang, F. Zhang, F. Xu, W. Lin, H. Wang, X. Chen, Angew. Chem. Int. Ed. 64 (2025) e202420217, https://doi.org/10.1002/anie.202420217  doi: 10.1002/anie.202420217

    246. [246]

      K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 7 (2016) 11470, https://doi.org/10.1038/ncomms11470  doi: 10.1038/ncomms11470

    247. [247]

      Y. Yang, C. Wang, Y. Li, K. Liu, H. Ju, J. Wang, R. Tao, J. Mater. Sci. Technol. 200 (2024) 185, https://doi.org/10.1016/j.jmst.2024.02.062  doi: 10.1016/j.jmst.2024.02.062

    248. [248]

      J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie, X. Sun, I. Marriam, X. Zhang, Adv. Energy Mater. 14 (2024) 2400740, https://doi.org/10.1002/aenm.202400740  doi: 10.1002/aenm.202400740

    249. [249]

      Y. Zhang, H. Xu, Giant 20 (2024) 100335, https://doi.org/ 10.1016/j.giant.2024.100335  doi: 10.1016/j.giant.2024.100335

    250. [250]

      H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 61 (2022) e202202328, https://doi.org/10.1002/anie.202202328  doi: 10.1002/anie.202202328

    251. [251]

      J. -N. Chang, Q. Li, J. -W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. -L. Li, Y. -Q. Lan, Angew. Chem. Int. Ed. 62 (2023) e202218868, https://doi.org/10.1002/anie.202218868  doi: 10.1002/anie.202218868

    252. [252]

      C. Wu, Z. Teng, C. Yang, F. Chen, H. B. Yang, L. Wang, H. Xu, B. Liu, G. Zheng, Q. Han, Adv. Mater. 34 (2022) 2110266, https://doi.org/10.1002/adma.202110266  doi: 10.1002/adma.202110266

    253. [253]

      G. Pan, X. Hou, Z. Liu, C. Yang, J. Long, G. Huang, J. Bi, Y. Yu, L. Li, ACS Catal. 12 (2022) 14911, https://doi.org/10.1021/acscatal.2c03878  doi: 10.1021/acscatal.2c03878

    254. [254]

      L. Li, L. Xu, Z. Hu, J. C. Yu, Adv. Funct. Mater. 31 (2021) 2106120, https://doi.org/10.1002/adfm.202106120  doi: 10.1002/adfm.202106120

    255. [255]

      C. Shao, Q. He, M. Zhang, L. Jia, Y. Ji, Y. Hu, Y. Li, W. Huang, Y. Li, Chin. J. Catal. 46 (2023) 28, https://doi.org/10.1016/s1872-2067(22)64205-0  doi: 10.1016/s1872-2067(22)64205-0

    256. [256]

      S. Zhou, H. Hu, H. Hu, Q. Jiang, H. Xie, C. Li, S. Gao, Y. Kong, Y. Hu, Sci. China Mater. 66 (2023) 1837, https://doi.org/10.1007/s40843-022-2337-7  doi: 10.1007/s40843-022-2337-7

    257. [257]

      L. Guo, L. Gong, Y. Yang, Z. Huang, X. Liu, F. Luo, Angew. Chem. Int. Ed. 64 (2025) e202414658, https://doi.org/10.1002/anie.202414658  doi: 10.1002/anie.202414658

    258. [258]

      Y. Peng, L. Yuan, K. -K. Liu, Z. -J. Guan, S. Jin, Y. Fang, Angew. Chem. Int. Ed. 64 (2025) e202423055, https://doi.org/10.1002/anie.202423055  doi: 10.1002/anie.202423055

    259. [259]

      D. Yang, H. Yu, T. He, S. Zuo, X. Liu, H. Yang, B. Ni, H. Li, L. Gu, D. Wang, X. Wang, Nat. Commun. 10 (2019) 3844, https://doi.org/10.1038/s41467-019-11817-2  doi: 10.1038/s41467-019-11817-2

    260. [260]

      H. -W. Zhu, R. -T. Guo, C. Liu, H. -F. Cui, M. -Y. Liu, W. -G. Pan, J. Mater. Chem. A 12 (2024) 21677, https://doi.org/10.1039/D4TA03676J  doi: 10.1039/D4TA03676J

    261. [261]

      J. Ran, M. Jaroniec, S. -Z. Qiao, Adv. Mater. 30 (2018) 1704649, https://doi.org/10.1002/adma.201704649  doi: 10.1002/adma.201704649

    262. [262]

      R. Lu, Y. Liu, Z. Wang, EcoEnergy 2 (2024) 695, https://doi.org/10.1002/ece2.67  doi: 10.1002/ece2.67

    263. [263]

      S. Mohata, P. Majumder, R. Banerjee, Chem. Soc. Rev. 54 (2025) 6062, https://doi.org/10.1039/d5cs00106d  doi: 10.1039/d5cs00106d

    264. [264]

      Z. Fu, X. Wang, A. M. Gardner, X. Wang, S. Y. Chong, G. Neri, A. J. Cowan, L. Liu, X. Li, A. Vogel, et al., Chem. Sci. 11 (2020) 543, https://doi.org/10.1039/C9SC03800K  doi: 10.1039/C9SC03800K

    265. [265]

      X. Chen, Q. Dang, R. Sa, L. Li, L. Li, J. Bi, Z. Zhang, J. Long, Y. Yu, Z. Zou, Chem. Sci. 11 (2020) 6915, https://doi.org/10.1039/D0SC01747G  doi: 10.1039/D0SC01747G

    266. [266]

      S. Yang, R. Sa, H. Zhong, H. Lv, D. Yuan, R. Wang, Adv. Funct. Mater. 32 (2022) 2110694, https://doi.org/10.1002/adfm.202110694  doi: 10.1002/adfm.202110694

    267. [267]

      M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J. -L. Wang, D. -Q. Yuan, Y. -Q. Lan, Angew. Chem. Int. Ed. 58 (2019) 12392, https://doi.org/10.1002/anie.201906890  doi: 10.1002/anie.201906890

    268. [268]

      W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 141 (2019) 7615, https://doi.org/10.1021/jacs.9b02997  doi: 10.1021/jacs.9b02997

    269. [269]

      Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu, J. Wang, Nat. Commun. 14 (2023) 1147, https://doi.org/10.1038/s41467-023-36779-4  doi: 10.1038/s41467-023-36779-4

    270. [270]

      M. Zhou, Z. Wang, A. Mei, Z. Yang, W. Chen, S. Ou, S. Wang, K. Chen, P. Reiss, K. Qi, et al., Nat. Commun. 14 (2023) 2473, https://doi.org/10.1038/s41467-023-37545-2  doi: 10.1038/s41467-023-37545-2

    271. [271]

      Y. Fu, X. Zhu, L. Huang, X. Zhang, F. Zhang, W. Zhu, Appl. Catal. B Environ. Energy 239 (2018) 46, https://doi.org/10.1016/j.apcatb.2018.08.004  doi: 10.1016/j.apcatb.2018.08.004

    272. [272]

      M. Kou, W. Liu, Y. Wang, J. Huang, Y. Chen, Y. Zhou, Y. Chen, M. Ma, K. Lei, H. Xie, P. K. Wong, L. Ye, Appl. Catal. B Environ. Energy 291 (2021) 120146, https://doi.org/10.1016/j.apcatb.2021.120146  doi: 10.1016/j.apcatb.2021.120146

    273. [273]

      R. K. Yadav, A. Kumar, N. -J. Park, K. -J. Kong, J. -O. Baeg, J. Mater. Chem. A 4 (2016) 9413, https://doi.org/10.1039/C6TA01625A  doi: 10.1039/C6TA01625A

    274. [274]

      W. Lin, F. Lin, J. Lin, Z. Xiao, D. Yuan, Y. Wang, J. Am. Chem. Soc. 146 (2024) 16229, https://doi.org/10.1021/jacs.4c04185  doi: 10.1021/jacs.4c04185

  • 加载中
    1. [1]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    4. [4]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    5. [5]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    19. [19]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    20. [20]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

Metrics
  • PDF Downloads(1)
  • Abstract views(67)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return