Citation: Jiali Lei, Juan Wang, Wenhui Zhang, Guohong Wang, Zihui Liang, Jinmao Li. TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100174. doi: 10.1016/j.actphy.2025.100174 shu

TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation

  • Corresponding author: Juan Wang, wangjuan830508@163.com Guohong Wang, wanggh2003@163.com Jinmao Li, jemolee@126.com
  • Received Date: 26 July 2025
    Revised Date: 24 August 2025
    Accepted Date: 25 August 2025

    Fund Project: the National Natural Science Foundation of China 52003079the National Natural Science Foundation of China 22075072Natural Science Foundation of Hubei Province 2023AFD027Natural Science Foundation of Hubei Province 2024AFB238Scientific Research Project of Education Department of Hubei Province D20232504the Open Research Fund of National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University FX20240019

  • In this paper, a dual-function TiO2/CdIn2S4 S-scheme heterojunction photocatalyst was fabricated through electrospinning and hydrothermal methods for hydrogen generation coupled with the selective oxidation of vanillyl alcohol (VAL) to vanillin (VN). The results indicate that the hybrid material containing 0.5 wt% CdIn2S4 possesses the best photocatalytic performance. The hydrogen generation rate reaches 403.36 μmol g−1 h−1. Meanwhile, the conversion of VAL is measured to be 90.99%. The results of experiments and density functional theory (DFT) calculations elucidate that the S-scheme heterojunction enhances the rate of charge migration and improves the efficiency of charge separation. In this system, the photoexcited holes with stronger oxidation capacity are reserved to catalyze the conversion of VAL into VN, while the photoexcited electrons with stronger reduction capacity are utilized to generate hydrogen. This study introduces a promising strategy that combines photocatalytic hydrogen generation with the selective conversion of organic compounds, offering novel insights into the development of innovative photocatalysts for effective solar energy utilization.
  • 加载中
    1. [1]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    2. [2]

      T. Gao, X. Liu, K. Wang, J. Wang, X. Wu, G. Wang, J. Colloid Interface Sci. 692 (2025) 137475, https://doi.org/10.1016/j.jcis.2025.137475.  doi: 10.1016/j.jcis.2025.137475

    3. [3]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.

    4. [4]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    5. [5]

      M. C. Antonino, A. U. Linares, R. R. Grau, P. G. Aznar, G. Sastre, J. Zhang, S. G. Ferrón, J. Albero, J. Yu, H. García, F. Xu, A. Primo, Angew. Chem. Int. Ed. 64 (2025) e202503860, https://doi.org/10.1002/anie. 202503860.  doi: 10.1002/anie.202503860

    6. [6]

      X. Xia, Y. Jia, W. Wang, J. Zhang, L. Wang, Q. Liu, J. Mater. Sci. Technol. 236 (2025) 301, https://doi.org/10.1016/j.jmst.2024.12.093.  doi: 10.1016/j.jmst.2024.12.093

    7. [7]

      S. Ma, Z. Li, Y. Hou, J. Li, Z. Zhang, T. Deng, G. Wu, R. Wang, S. Yang, X. Liu, Angew. Chem. Int. Ed. 64 (2025) 202501869, https://doi.org/10.1002/anie. 202501869.  doi: 10.1002/anie.202501869

    8. [8]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6.  doi: 10.1016/S1872-2067(24)60253-6

    9. [9]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    10. [10]

      F. Meng, F. Zhao, J. Lin, J. Zhao, H. Zhang, S. Wang, Acta Phys. Chim. Sin. 41 (2025) 100095, https://doi.org/10.1016/j.actphy.2025.100095.  doi: 10.1016/j.actphy.2025.100095

    11. [11]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    12. [12]

      J. Zhu, X. Li, Chin. J. Catal. 72 (2025) 1, https://doi.org/10.1016/S1872-2067(25)64684-5.  doi: 10.1016/S1872-2067(25)64684-5

    13. [13]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    14. [14]

      G. Zhang, S. Huang, X. Li, D. Chen, N. Li, Q. Xu, H. Li, J. Lu, Appl. Catal. B 331 (2023) 122725, https://doi.org/10.1016/j.apcatb.2023.122725.  doi: 10.1016/j.apcatb.2023.122725

    15. [15]

      P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 421 (2021) 129870, https://doi.org/10.1016/j.cej.2021.129870.  doi: 10.1016/j.cej.2021.129870

    16. [16]

      J. Yang, J. Wang, G. Wang, K. Wang, J. Li, L. Zhao, J. Mater. Sci. Technol. 189 (2024) 86, https://doi.org/10.1016/j.jmst.2023.11.065.

    17. [17]

      J. Tao, M. Wang, G. Liu, Q. Liu, L. Lu, N. Wan, H. Tang, G. Qiao, J. Adv. Ceram. 11 (2022) 1117, https://doi.org/10.1007/s40145-022-0598-y.  doi: 10.1007/s40145-022-0598-y

    18. [18]

      M. Tayyab, Y. Liu, S. Min, R. Muhammad Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Chin. J. Catal. 43 (2022) 1165, https://doi.org/10.1016/s1872-2067(21)63997-9.  doi: 10.1016/s1872-2067(21)63997-9

    19. [19]

      J. Wang, G. Wang, J. Jiang, Z. Wan, Y. Su, H. Tang, J. Colloid Interface Sci. 564 (2020) 322, https://doi.org/10.1016/j.jcis.2019.12.111.  doi: 10.1016/j.jcis.2019.12.111

    20. [20]

      X. Feng, K. Guo, C. Jia, B. Liu, S. Ci, J. Chen, Z. Wen, Acta Phys. Chim. Sin. 40 (2024) 2303050, https://doi.org/10.3866/PKU.WHXB202303050.  doi: 10.3866/PKU.WHXB202303050

    21. [21]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.  doi: 10.1016/j.jmst.2025.02.013

    22. [22]

      S. Wang, K. Qi, J. Mater. Sci. Technol. 226 (2025) 317, https://doi.org/10.1016/j.jmst.2024.11.056.  doi: 10.1016/j.jmst.2024.11.056

    23. [23]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    24. [24]

      R. Du, C. Wang, L. Guo, R. A. Soomro, B. Xu, C. Yang, F. Fu, D. Wang, Small 19 (2023) 2302330, https://doi.org/10.1002/smll.202302330.  doi: 10.1002/smll.202302330

    25. [25]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

    26. [26]

      J. Luo, M. Wang, L. Chen, J. Shi, J. Energy Chem. 66 (2022) 52, https://doi.org/10.1016/j.jechem.2021.07.017.  doi: 10.1016/j.jechem.2021.07.017

    27. [27]

      D. Mao, T. Li, H. He, S. Yang, S. Yang, C. Sun, S. Zheng, Z. Jiang, Z. Xu, P. K. Wong, X. Qu, Appl. Catal. B 340 (2024) 123239, https://doi.org/10.1016/j. apcatb.2023.123239.  doi: 10.1016/j.apcatb.2023.123239

    28. [28]

      L. Zhao, Q. Meng, X. Fan, C. Ye, X. Li, B. Chen, V. Ramamurthy, C. Tung, L. Wu, Angew. Chem. Int. Ed. 56 (2017) 3020, https://doi.org/10.1002/anie.201700243.  doi: 10.1002/anie.201700243

    29. [29]

      R. Behling, G. Chatel, S. Valange, Ultrason. Sonochem. 36 (2017) 27, https://doi.org/10.1016/j.ultsonch.2016.11.015.  doi: 10.1016/j.ultsonch.2016.11.015

    30. [30]

      M. Y. Qi, M. Conte, M. Anpo, Z. R. Tang, Y. J. Xu, Chem. Rev. 121 (2021) 13051, https://doi.org/10.1021/acs.chemrev.1c00197.  doi: 10.1021/acs.chemrev.1c00197

    31. [31]

      L. Wang, J. Zhao, J. Mater. Sci. Technol. 241 (2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.  doi: 10.1016/j.jmst.2025.04.009

    32. [32]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.  doi: 10.1016/j.apcatb.2023.122780

    33. [33]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/51872-2067(23)64551-6.  doi: 10.1016/51872-2067(23)64551-6

    34. [34]

      D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4 (2022) 1094, https://doi.org/10.1007/s42765-022-00149-4.  doi: 10.1007/s42765-022-00149-4

    35. [35]

      W. Guo, J. Zou, B. Guo, J. Xiong, C. Liu, Z. Xie, L. Wu, Appl. Catal. B 277 (2020) 119255, https://doi.org/10.1016/j.apcatb.2020.119255.  doi: 10.1016/j.apcatb.2020.119255

    36. [36]

      Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (2019) 1901997, https://doi.org/ 10.1002/adma.201901997.  doi: 10.1002/adma.201901997

    37. [37]

      Z. Guo, X. Zhang, X. Li, C. Cui, Z. Zhang, H. Li, D. Zhang, J. Li, X. Xu, J. Zhang, Nano Res. 17 (2024) 4834, https://doi.org/10.1007/s12274-024-6453-4.  doi: 10.1007/s12274-024-6453-4

    38. [38]

      F. Xu, K. Meng, S. Cao, C. Jiang, T. Chen, J. Xu, J. Yu, ACS Catal. 12 (2021) 164, https://doi.org/10.1021/acscatal.1c04903.  doi: 10.1021/acscatal.1c04903

    39. [39]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    40. [40]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    41. [41]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.  doi: 10.1016/j.chempr.2020.06.010

    42. [42]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    43. [43]

      R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989, https://doi.org/10.1016/j.jmat.2024.100989  doi: 10.1016/j.jmat.2024.100989

    44. [44]

      X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5, https://doi.org/10.1016/S1872-2067(24)60223-8.  doi: 10.1016/S1872-2067(24)60223-8

    45. [45]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.  doi: 10.1016/j.jmst.2025.02.040

    46. [46]

      J. Yan, L. Wei, Acta Phys. Chim. Sin. 40 (2024) 2312024, https://doi.org/ 10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    47. [47]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    48. [48]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    49. [49]

      A. Shawky, R. Mohamed, J. Environ. Chem. Eng. 10 (2022) 108249, https://doi.org/10.1016/j.jece.2022.108249.  doi: 10.1016/j.jece.2022.108249

    50. [50]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    51. [51]

      T. Li, N. Tsubaki, Z. Jin, J. Mater. Sci. Technol. 169 (2024) 82, https://doi.org/10.1016/j.jmst.2023.04.049.  doi: 10.1016/j.jmst.2023.04.049

    52. [52]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    53. [53]

      R. Wu, Y. Liu, S. Yu, Mater. Lett. 304 (2021) 130611, https://doi.org/10.1016/j.matlet.2021.130611.  doi: 10.1016/j.matlet.2021.130611

    54. [54]

      S. Wang, B. Y. Guan, X. Wang, X. W. D. Lou, J. Am. Chem. Soc. 140 (2018) 15145, https://doi.org/10.1021/jacs.8b07721.  doi: 10.1021/jacs.8b07721

    55. [55]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    56. [56]

      X. Liu, Z. Jiang, L. Xu, C. Liu, Int. J. Hydrogen Energ. 48 (2023) 22079, https://doi.org/10.1016/j.ijhydene.2023.03.119.  doi: 10.1016/j.ijhydene.2023.03.119

    57. [57]

      J. Zhang, L. Zheng, F. Wang, C. Chen, H. Wu, S. A. K. Leghari, M. Long, Appl. Catal. B 269 (2020) 118770, https://doi.org/10.1016/j.apcatb.2020.118770.  doi: 10.1016/j.apcatb.2020.118770

    58. [58]

      S. Sambyal, A. Sudhaik, S. Sonu, P. Raizada, V. Chaudhary, V. H. Nguyen, A. A. P. Khan, C. M. Hussain, P. Singh, Coordin. Chem. Rev. 535 (2025) 216653, https://doi.org/10.1016/j.ccr.2025.216653.  doi: 10.1016/j.ccr.2025.216653

    59. [59]

      Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, J. Mater. Sci. Technol. 125 (2022) 128, https://doi.org/10.1016/j.jmst.2022.02.035.  doi: 10.1016/j.jmst.2022.02.035

    60. [60]

      M. A. Mahadadalkar, S. W. Gosavi, B. B. Kale, J. Mater. Chem. A 6 (2018) 401, https://doi.org/10.1039/c8ta03398f.  doi: 10.1039/c8ta03398f

    61. [61]

      Y. Rao, M. Sun, B. Zhou, L. Wang, Z. Wang, T. Yan, Y. Shao, Int. J. Hydrogen Energ. 51 (2024) 133, https://doi.org/10.1016/j.ijhydene.2023.08.089.  doi: 10.1016/j.ijhydene.2023.08.089

    62. [62]

      F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311 (2014) 574, https://doi.org/10.1016/j.apsusc.2014.05.111.  doi: 10.1016/j.apsusc.2014.05.111

    63. [63]

      Z. Y. Liang, E. D. Zhan, Y. Wang, G. X. Zhuang, J. X. Wei, Y. L. Wen, Int. J. Hydrog. Energy 92 (2024) 300, https://doi.org/10.1016/j.ijhydene.2024.10.300.  doi: 10.1016/j.ijhydene.2024.10.300

    64. [64]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.  doi: 10.1016/j.apcatb.2020.119006

    65. [65]

      Q. Shi, X. Zhang, X. Liu, L. Xu, B. Liu, J. Zhang, H. Xu, Z. Han, G. Li, Carbon 196 (2022) 401, https://doi.org/10.1016/j.carbon.2022.05.007.  doi: 10.1016/j.carbon.2022.05.007

    66. [66]

      Y. Yuan, R. T. Guo, Z. W. Zhang, L. F. Hong, X. Y. Ji, Z. D. Lin, W. G. Pan, Energy Fuel 35 (2021) 13291, https://doi.org/10.1021/acs.energyfuels.1c01563.  doi: 10.1021/acs.energyfuels.1c01563

    67. [67]

      L. Meng, M. Wang, H. Sun, W. Tian, C. Xiao, S. Wu, F. Cao, L. Li, Adv. Mater. 32 (2020) 2002893, https://doi.org/10.1002/adma.202002893.  doi: 10.1002/adma.202002893

    68. [68]

      C. Yuan, X. Zou, F. He, Y. Dong, Y. Cui, H. Ge, Y. Hou, Adv. Energ. Sust. Res. 3 (2022) 2200012, https://doi.org/10.1002/aesr.202200012.  doi: 10.1002/aesr.202200012

    69. [69]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    70. [70]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    71. [71]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    72. [72]

      J. Wang, G. Wang, X. Wang, Y. Wu, Y. Su, H. Tang, Carbon 149 (2019) 618, https://doi.org/10.1016/j.carbon.2019.04.088.  doi: 10.1016/j.carbon.2019.04.088

    73. [73]

      J. Yang, J. Wang, W. Zhao, G. Wang, K. Wang, X. Wu, J. Li, Appl. Surf. Sci. 613 (2023) 156083, https://doi.org/10.1016/j.apsusc.2022.156083.  doi: 10.1016/j.apsusc.2022.156083

    74. [74]

      X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, Y. Liu, J. Hazard. Mater. 344 (2018) 113, https://doi.org/10.1016/j.jhazmat.2017.10.006.  doi: 10.1016/j.jhazmat.2017.10.006

  • 加载中
    1. [1]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    4. [4]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    5. [5]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    8. [8]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    9. [9]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    10. [10]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    11. [11]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    19. [19]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(0)
  • Abstract views(65)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return