TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation
- Corresponding author: Juan Wang, wangjuan830508@163.com Guohong Wang, wanggh2003@163.com Jinmao Li, jemolee@126.com
Citation:
Jiali Lei, Juan Wang, Wenhui Zhang, Guohong Wang, Zihui Liang, Jinmao Li. TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation[J]. Acta Physico-Chimica Sinica,
;2025, 41(12): 100174.
doi:
10.1016/j.actphy.2025.100174
C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.
doi: 10.1016/j.jmst.2024.12.047
T. Gao, X. Liu, K. Wang, J. Wang, X. Wu, G. Wang, J. Colloid Interface Sci. 692 (2025) 137475, https://doi.org/10.1016/j.jcis.2025.137475.
doi: 10.1016/j.jcis.2025.137475
J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.
H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.
doi: 10.1038/s41467-025-56306-x
M. C. Antonino, A. U. Linares, R. R. Grau, P. G. Aznar, G. Sastre, J. Zhang, S. G. Ferrón, J. Albero, J. Yu, H. García, F. Xu, A. Primo, Angew. Chem. Int. Ed. 64 (2025) e202503860, https://doi.org/10.1002/anie. 202503860.
doi: 10.1002/anie.202503860
X. Xia, Y. Jia, W. Wang, J. Zhang, L. Wang, Q. Liu, J. Mater. Sci. Technol. 236 (2025) 301, https://doi.org/10.1016/j.jmst.2024.12.093.
doi: 10.1016/j.jmst.2024.12.093
S. Ma, Z. Li, Y. Hou, J. Li, Z. Zhang, T. Deng, G. Wu, R. Wang, S. Yang, X. Liu, Angew. Chem. Int. Ed. 64 (2025) 202501869, https://doi.org/10.1002/anie. 202501869.
doi: 10.1002/anie.202501869
Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6.
doi: 10.1016/S1872-2067(24)60253-6
M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.
doi: 10.1002/adma.202414803
F. Meng, F. Zhao, J. Lin, J. Zhao, H. Zhang, S. Wang, Acta Phys. Chim. Sin. 41 (2025) 100095, https://doi.org/10.1016/j.actphy.2025.100095.
doi: 10.1016/j.actphy.2025.100095
M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.
doi: 10.1016/j.jmst.2025.01.036
J. Zhu, X. Li, Chin. J. Catal. 72 (2025) 1, https://doi.org/10.1016/S1872-2067(25)64684-5.
doi: 10.1016/S1872-2067(25)64684-5
S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.
doi: 10.1016/S1872-2067(24)60102-6
G. Zhang, S. Huang, X. Li, D. Chen, N. Li, Q. Xu, H. Li, J. Lu, Appl. Catal. B 331 (2023) 122725, https://doi.org/10.1016/j.apcatb.2023.122725.
doi: 10.1016/j.apcatb.2023.122725
P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 421 (2021) 129870, https://doi.org/10.1016/j.cej.2021.129870.
doi: 10.1016/j.cej.2021.129870
J. Yang, J. Wang, G. Wang, K. Wang, J. Li, L. Zhao, J. Mater. Sci. Technol. 189 (2024) 86, https://doi.org/10.1016/j.jmst.2023.11.065.
J. Tao, M. Wang, G. Liu, Q. Liu, L. Lu, N. Wan, H. Tang, G. Qiao, J. Adv. Ceram. 11 (2022) 1117, https://doi.org/10.1007/s40145-022-0598-y.
doi: 10.1007/s40145-022-0598-y
M. Tayyab, Y. Liu, S. Min, R. Muhammad Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Chin. J. Catal. 43 (2022) 1165, https://doi.org/10.1016/s1872-2067(21)63997-9.
doi: 10.1016/s1872-2067(21)63997-9
J. Wang, G. Wang, J. Jiang, Z. Wan, Y. Su, H. Tang, J. Colloid Interface Sci. 564 (2020) 322, https://doi.org/10.1016/j.jcis.2019.12.111.
doi: 10.1016/j.jcis.2019.12.111
X. Feng, K. Guo, C. Jia, B. Liu, S. Ci, J. Chen, Z. Wen, Acta Phys. Chim. Sin. 40 (2024) 2303050, https://doi.org/10.3866/PKU.WHXB202303050.
doi: 10.3866/PKU.WHXB202303050
B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.
doi: 10.1016/j.jmst.2025.02.013
S. Wang, K. Qi, J. Mater. Sci. Technol. 226 (2025) 317, https://doi.org/10.1016/j.jmst.2024.11.056.
doi: 10.1016/j.jmst.2024.11.056
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.
doi: 10.3866/PKU.WHXB202307016
R. Du, C. Wang, L. Guo, R. A. Soomro, B. Xu, C. Yang, F. Fu, D. Wang, Small 19 (2023) 2302330, https://doi.org/10.1002/smll.202302330.
doi: 10.1002/smll.202302330
W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.
doi: 10.1016/S1872-2067(25)60706-1
J. Luo, M. Wang, L. Chen, J. Shi, J. Energy Chem. 66 (2022) 52, https://doi.org/10.1016/j.jechem.2021.07.017.
doi: 10.1016/j.jechem.2021.07.017
D. Mao, T. Li, H. He, S. Yang, S. Yang, C. Sun, S. Zheng, Z. Jiang, Z. Xu, P. K. Wong, X. Qu, Appl. Catal. B 340 (2024) 123239, https://doi.org/10.1016/j. apcatb.2023.123239.
doi: 10.1016/j.apcatb.2023.123239
L. Zhao, Q. Meng, X. Fan, C. Ye, X. Li, B. Chen, V. Ramamurthy, C. Tung, L. Wu, Angew. Chem. Int. Ed. 56 (2017) 3020, https://doi.org/10.1002/anie.201700243.
doi: 10.1002/anie.201700243
R. Behling, G. Chatel, S. Valange, Ultrason. Sonochem. 36 (2017) 27, https://doi.org/10.1016/j.ultsonch.2016.11.015.
doi: 10.1016/j.ultsonch.2016.11.015
M. Y. Qi, M. Conte, M. Anpo, Z. R. Tang, Y. J. Xu, Chem. Rev. 121 (2021) 13051, https://doi.org/10.1021/acs.chemrev.1c00197.
doi: 10.1021/acs.chemrev.1c00197
L. Wang, J. Zhao, J. Mater. Sci. Technol. 241 (2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.
doi: 10.1016/j.jmst.2025.04.009
Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.
doi: 10.1016/j.apcatb.2023.122780
W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/51872-2067(23)64551-6.
doi: 10.1016/51872-2067(23)64551-6
D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4 (2022) 1094, https://doi.org/10.1007/s42765-022-00149-4.
doi: 10.1007/s42765-022-00149-4
W. Guo, J. Zou, B. Guo, J. Xiong, C. Liu, Z. Xie, L. Wu, Appl. Catal. B 277 (2020) 119255, https://doi.org/10.1016/j.apcatb.2020.119255.
doi: 10.1016/j.apcatb.2020.119255
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (2019) 1901997, https://doi.org/ 10.1002/adma.201901997.
doi: 10.1002/adma.201901997
Z. Guo, X. Zhang, X. Li, C. Cui, Z. Zhang, H. Li, D. Zhang, J. Li, X. Xu, J. Zhang, Nano Res. 17 (2024) 4834, https://doi.org/10.1007/s12274-024-6453-4.
doi: 10.1007/s12274-024-6453-4
F. Xu, K. Meng, S. Cao, C. Jiang, T. Chen, J. Xu, J. Yu, ACS Catal. 12 (2021) 164, https://doi.org/10.1021/acscatal.1c04903.
doi: 10.1021/acscatal.1c04903
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
doi: 10.1038/s41570-025-00698-3
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.
doi: 10.1039/d4cs01091d
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.
doi: 10.1016/j.chempr.2020.06.010
J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.
doi: 10.1016/j.jmat.2024.100975
R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989, https://doi.org/10.1016/j.jmat.2024.100989
doi: 10.1016/j.jmat.2024.100989
X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5, https://doi.org/10.1016/S1872-2067(24)60223-8.
doi: 10.1016/S1872-2067(24)60223-8
D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.
doi: 10.1016/j.jmst.2025.02.040
J. Yan, L. Wei, Acta Phys. Chim. Sin. 40 (2024) 2312024, https://doi.org/ 10.3866/PKU.WHXB202312024.
doi: 10.3866/PKU.WHXB202312024
Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.
doi: 10.1002/anie.202505456
K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.
doi: 10.1007/s40843-023-2717-0
A. Shawky, R. Mohamed, J. Environ. Chem. Eng. 10 (2022) 108249, https://doi.org/10.1016/j.jece.2022.108249.
doi: 10.1016/j.jece.2022.108249
Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.
doi: 10.3866/PKU.WHXB202406027
T. Li, N. Tsubaki, Z. Jin, J. Mater. Sci. Technol. 169 (2024) 82, https://doi.org/10.1016/j.jmst.2023.04.049.
doi: 10.1016/j.jmst.2023.04.049
B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.
doi: 10.1016/j.mattod.2024.11.012
R. Wu, Y. Liu, S. Yu, Mater. Lett. 304 (2021) 130611, https://doi.org/10.1016/j.matlet.2021.130611.
doi: 10.1016/j.matlet.2021.130611
S. Wang, B. Y. Guan, X. Wang, X. W. D. Lou, J. Am. Chem. Soc. 140 (2018) 15145, https://doi.org/10.1021/jacs.8b07721.
doi: 10.1021/jacs.8b07721
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.
doi: 10.1038/s41467-021-25007-6
X. Liu, Z. Jiang, L. Xu, C. Liu, Int. J. Hydrogen Energ. 48 (2023) 22079, https://doi.org/10.1016/j.ijhydene.2023.03.119.
doi: 10.1016/j.ijhydene.2023.03.119
J. Zhang, L. Zheng, F. Wang, C. Chen, H. Wu, S. A. K. Leghari, M. Long, Appl. Catal. B 269 (2020) 118770, https://doi.org/10.1016/j.apcatb.2020.118770.
doi: 10.1016/j.apcatb.2020.118770
S. Sambyal, A. Sudhaik, S. Sonu, P. Raizada, V. Chaudhary, V. H. Nguyen, A. A. P. Khan, C. M. Hussain, P. Singh, Coordin. Chem. Rev. 535 (2025) 216653, https://doi.org/10.1016/j.ccr.2025.216653.
doi: 10.1016/j.ccr.2025.216653
Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, J. Mater. Sci. Technol. 125 (2022) 128, https://doi.org/10.1016/j.jmst.2022.02.035.
doi: 10.1016/j.jmst.2022.02.035
M. A. Mahadadalkar, S. W. Gosavi, B. B. Kale, J. Mater. Chem. A 6 (2018) 401, https://doi.org/10.1039/c8ta03398f.
doi: 10.1039/c8ta03398f
Y. Rao, M. Sun, B. Zhou, L. Wang, Z. Wang, T. Yan, Y. Shao, Int. J. Hydrogen Energ. 51 (2024) 133, https://doi.org/10.1016/j.ijhydene.2023.08.089.
doi: 10.1016/j.ijhydene.2023.08.089
F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311 (2014) 574, https://doi.org/10.1016/j.apsusc.2014.05.111.
doi: 10.1016/j.apsusc.2014.05.111
Z. Y. Liang, E. D. Zhan, Y. Wang, G. X. Zhuang, J. X. Wei, Y. L. Wen, Int. J. Hydrog. Energy 92 (2024) 300, https://doi.org/10.1016/j.ijhydene.2024.10.300.
doi: 10.1016/j.ijhydene.2024.10.300
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.
doi: 10.1016/j.apcatb.2020.119006
Q. Shi, X. Zhang, X. Liu, L. Xu, B. Liu, J. Zhang, H. Xu, Z. Han, G. Li, Carbon 196 (2022) 401, https://doi.org/10.1016/j.carbon.2022.05.007.
doi: 10.1016/j.carbon.2022.05.007
Y. Yuan, R. T. Guo, Z. W. Zhang, L. F. Hong, X. Y. Ji, Z. D. Lin, W. G. Pan, Energy Fuel 35 (2021) 13291, https://doi.org/10.1021/acs.energyfuels.1c01563.
doi: 10.1021/acs.energyfuels.1c01563
L. Meng, M. Wang, H. Sun, W. Tian, C. Xiao, S. Wu, F. Cao, L. Li, Adv. Mater. 32 (2020) 2002893, https://doi.org/10.1002/adma.202002893.
doi: 10.1002/adma.202002893
C. Yuan, X. Zou, F. He, Y. Dong, Y. Cui, H. Ge, Y. Hou, Adv. Energ. Sust. Res. 3 (2022) 2200012, https://doi.org/10.1002/aesr.202200012.
doi: 10.1002/aesr.202200012
F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.
doi: 10.1002/anie.202414672
K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.
doi: 10.1002/adma.202505088
Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.
doi: 10.1016/j.actphy.2025.100064
J. Wang, G. Wang, X. Wang, Y. Wu, Y. Su, H. Tang, Carbon 149 (2019) 618, https://doi.org/10.1016/j.carbon.2019.04.088.
doi: 10.1016/j.carbon.2019.04.088
J. Yang, J. Wang, W. Zhao, G. Wang, K. Wang, X. Wu, J. Li, Appl. Surf. Sci. 613 (2023) 156083, https://doi.org/10.1016/j.apsusc.2022.156083.
doi: 10.1016/j.apsusc.2022.156083
X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, Y. Liu, J. Hazard. Mater. 344 (2018) 113, https://doi.org/10.1016/j.jhazmat.2017.10.006.
doi: 10.1016/j.jhazmat.2017.10.006
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Yiting Huo , Xin Zhou , Feifan Zhao , Chenbin Ai , Zhen Wu , Zhidong Chang , Bicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
Chunchun Wang , Changjun You , Ke Rong , Chuqi Shen , Fang Yang , Shijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045
Ziyang Long , Quanzheng Li , Chengliang Zhang , Haifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366