Citation: Jiayao Wang, Guixu Pan, Ning Wang, Shihan Wang, Yaolin Zhu, Yunfeng Li. Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100168. doi: 10.1016/j.actphy.2025.100168 shu

Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production

  • Corresponding author: Ning Wang, ninaw2018@163.com Yaolin Zhu, 20070802@xpu.edu.cn Yunfeng Li, liyf377@nenu.edu.cn
  • Received Date: 19 July 2025
    Revised Date: 17 August 2025
    Accepted Date: 18 August 2025

    Fund Project: the National Natural Science Foundation of China 22008185the National Natural Science Foundation of China 21872023the Shaanxi Provincial Key Research and Development Program 2022GY-166the Shaanxi Provincial Key Research and Development Program 2024SF-YBXM-593the Shaanxi Provincial Department of Education Youth Innovation Team Research Plan Project 24JP072Scientific Research Program Funded by Shaanxi Provincial Education Department 23JC033the Xi'an Science and Technology Planning Project 24GXFW0021

  • Donor-π-Acceptor (D-π-A) conjugated polymers represent an emerging class of materials featuring alternating electron donor (D), π-bridge (π), and electron acceptor (A) units, which exhibit significant potential in enhancing visible-light absorption and optimizing charge separation and redistribution. To overcome the limitations of graphitic carbon nitride (g-C3N4) while capitalizing on the structural merits of D-π-A systems, a series of 4-aromatic amine derivatives modified g-C3N4 photocatalysts was designed and synthesized through precise molecular level regulation with tailored local electron delocalization. This strategy allows for a systematic investigation of the relationship between electron delocalization extent and photocatalytic H2O2 production. Furthermore, the electron-withdrawing induction effect for regulating electron delocalization results in a substantial enhancement of photoinduced electron transfer to surface reactive sites. The as-synthesized optimum photocatalyst exhibits a remarkable H2O2 production performance, which is 30.44 times higher than that of the pristine g-C3N4. The mechanism study reveals that the photocatalytic H2O2 production in D-π-A-type g-C3N4 proceeds primarily via a two-electron oxygen reduction reaction (ORR).
  • 加载中
    1. [1]

      A. Chakraborty, A. Alam, U. Pal, A. Sinha, S. Das, T. Saha-Dasgupta, P. Pachfule, Nat. Commun. 16 (2025) 503, https://doi.org/10.1038/s41467-025-55894-y.  doi: 10.1038/s41467-025-55894-y

    2. [2]

      X. Y. Deng, J. J. Zhang, K. Z. Qi, G. J. Liang, F. Y. Xu, J. G. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    3. [3]

      L. Y. Zhang, J. J. Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    4. [4]

      M. Sayed, K. Z. Qi, X. H. Wu, L. Y. Zhang, H. García, J. G. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.  doi: 10.1039/D4CS01091D

    5. [5]

      X. Y. Sun, T. Y. Yang, Y. M. Dong, J. Rong, H. Zhao, J. W. Zhang, Y. F. Zhu, Adv. Energy. Mater. 15 (2025) 2405687, https://doi.org/10.1002/aenm.202405687.  doi: 10.1002/aenm.202405687

    6. [6]

      R. C. Shen, C. Huang, L. Hao, G. J. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4.  doi: 10.1038/s41467-025-57662-4

    7. [7]

      W. Zhong, A. Y. Meng, Y. R. Su, H. G. Yu, P. G. Han, J. G. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    8. [8]

      R. C. Shen, X. Z. Li, C. C. Qin, P. Zhang, X. Li, Adv. Energy. Mater. 13 (2023) 2203695, https://doi.org/10.1002/aenm.202203695.  doi: 10.1002/aenm.202203695

    9. [9]

      H. L. Ding, R. C. Shen, K. H. Huang, C. Huang, G. J. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    10. [10]

      R. Q. Gao, J. X. Bai, R. C. Shen, L. Hao, C. Huang, L. Wang, G. J. Liang, P. Zhang, X. Li, J. Mater. Sci. Technol. 137 (2023) 223, https://doi.org/10.1016/j.jmst.2022.09.001.  doi: 10.1016/j.jmst.2022.09.001

    11. [11]

      D. R. Ma, Q. Y. Lian, Y. X. Zhang, Y. J. Huang, X. Y. Guan, Q. W. Liang, C. He, D. H. Xia, S. W. Liu, J. G. Yu, Nat. Commun. 14 (2023) 7011, https://doi.org/10.1038/s41467-023-42853-8.  doi: 10.1038/s41467-023-42853-8

    12. [12]

      B. C. Zhu, C. J. Jiang, J. S. Xu, Z. Y. Zhang, J. W. Fu, J. G. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    13. [13]

      F. Y. Li, G. H. Zhu, J. Z. Jiang, L. Yang, F. X. Deng, Arramel, X. Li, J. Mater. Sci. Technol. 177 (2024) 142, https://doi.org/10.1016/j.jmst.2023.08.038.  doi: 10.1016/j.jmst.2023.08.038

    14. [14]

      T. Liu, Y. F. Li, H. J. Sun, M. Zhang, Z. L. Xia, Q. Yang, Chin. J. Struct. Chem. 41 (2022) 2206055, https://doi.org/10.14102/j.cnki.0254-5861.2022-0152.  doi: 10.14102/j.cnki.0254-5861.2022-0152

    15. [15]

      B. Cao, Y. F. Liu, Y. Zhao, J. S. Qu, Q. Zhou, F. S. Xiao, C. Li, L. Wang, R. G. Li, Angew. Chem. Int. Ed. 64 (2025) e202422495, https://doi.org/10.1002/anie.202422495.  doi: 10.1002/anie.202422495

    16. [16]

      S. J. Li, C. C. Wang, K. X. Dong, P. Zhang, X. B. Chen, X. Li, Chin. J. Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1.  doi: 10.1016/S1872-2067(23)64479-1

    17. [17]

      M. Li, J. Z. Wang, Z. L. Jin, Rare Met. 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.  doi: 10.1007/s12598-023-02539-y

    18. [18]

      K. H. Huang, J. X. Bai, R. C. Shen, X. Z. Li, C. C. Qin, P. Zhang, X. Li, Adv. Funct. Mater. 33 (2023) 2307300, https://doi.org/10.1002/adfm.202307300.  doi: 10.1002/adfm.202307300

    19. [19]

      F. X. Yin, P. Q. Qin, J. S. Xu, S. W. Cao, Acta Phys. -Chim. Sin. 39 (2023) 2212062, https://doi.org/10.3866/PKU.WHXB202212062.  doi: 10.3866/PKU.WHXB202212062

    20. [20]

      X. Y. Yin, H. Y. Shi, Y. Wang, X. F. Wang, P. Wang, H. G. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.  doi: 10.3866/PKU.WHXB202312007

    21. [21]

      Z. Lu, H. Lv, Q. Z. Liu, Z. L. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2405005, https://doi.org/10.3866/PKU.WHXB202405005.  doi: 10.3866/PKU.WHXB202405005

    22. [22]

      G. Q. Chen, Z. X. Zheng, W. Zhong, G. H. Wang, X. H. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/PKU.WHXB202406021.  doi: 10.3866/PKU.WHXB202406021

    23. [23]

      C. Cheng, J. G. Yu, D. F. Xu, L. Wang, G. J. Liang, L. Y. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    24. [24]

      W. Zhong, D. Zheng, Y. X. Ou, A. Y. Meng, Y. R. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005.  doi: 10.3866/PKU.WHXB202406005

    25. [25]

      L. L. Wang, W. Y. Cheng, J. X. Wang, J. Yang, Q. Q. Liu, Chin. J. Catal. 58 (2024) 194, https://doi.org/10.1016/S1872-2067(23)64602-9.  doi: 10.1016/S1872-2067(23)64602-9

    26. [26]

      X. W. Jia, Y. F. Li, X. C. Liu, X. D. Yu, C. Wang, Z. Shi, Y. Xing, Catal. Sci. Technol. 12 (2022) 5136, https://doi.org/10.1039/D2CY00824F.  doi: 10.1039/D2CY00824F

    27. [27]

      X. F. Li, Z. G. Wang, Acta Phys. -Chim. Sin. 41 (2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.  doi: 10.1016/j.actphy.2025.100080

    28. [28]

      J. K. Pan, A. Zhang, L. H. Zhang, P. Y. Dong, Chin. J. Catal. 58 (2024) 180, https://doi.org/10.1016/S1872-2067(23)64609-1.  doi: 10.1016/S1872-2067(23)64609-1

    29. [29]

      K. Meng, J. J. Zhang, B. Cheng, X. G. Ren, Z. S. Xia, F. Y. Xu, L. Y. Zhang, J. G. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    30. [30]

      Y. Xie, Q. T. Zhang, H. L. Sun, Z. Y. Teng, C. L. Su, Acta Phys. -Chim. Sin. 39 (2023) 2301001, https://doi.org/10.3866/PKU.WHXB202301001.  doi: 10.3866/PKU.WHXB202301001

    31. [31]

      Y. C. Jin, X. L. Liu, C. Qu, C. J. Li, H. L. Wang, X. N. Zhan, X. Y. Cao, X. F. Li, B. Q. Yu, Q. Zhang, D. D. Qi, J. Z. Jiang, Chin. J. Catal. 57 (2024) 171, https://doi.org/10.1016/S1872-2067(23)64592-9.  doi: 10.1016/S1872-2067(23)64592-9

    32. [32]

      M. L. Sun, R. Y. Zhang, A. Sun, X. W. Jia, X. C. Liu, X. D. Yu, Y. Xing, J. Colloid Interface Sci. 677 (2025) 610, https://doi.org/10.1016/j.jcis.2024.07.234.  doi: 10.1016/j.jcis.2024.07.234

    33. [33]

      Y. W. Chen, Y. Qiu, T. Chen, H. Wang, Acs Nano 19 (2025) 6588, https://doi.org/10.1021/acsnano.4c18864.  doi: 10.1021/acsnano.4c18864

    34. [34]

      Y. J. Zhou, P. Y. Dong, J. H. Liu, B. B. Zhang, B. Y. Zhang, X. G. Xi, J. L. Zhang, Adv. Funct. Mater. 35 (2025) 2500733, https://doi.org/10.1002/adfm.202500733.  doi: 10.1002/adfm.202500733

    35. [35]

      K. Y. Zhang, Y. F. Li, S. D. Yuan, L. H. Zhang, Q. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    36. [36]

      M. M. Luo, G. J. Jiang, M. Yu, Y. P. Yan, Z. J. Qin, Y. Li, Q. Zhang, J. Mater. Sci. Technol. 161 (2023) 220, https://doi.org/10.1016/j.jmst.2023.03.038.  doi: 10.1016/j.jmst.2023.03.038

    37. [37]

      W. L. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

    38. [38]

      C. Z. Zhu, Q. H. Tian, B. H. Wang, M. T. Xu, Q. J. Jin, Z. Y. Zhang, S. K. Le, Y. Wu, Y. C. Wei, H. T. Xu, Rare Met. 43 (2024) 5473, https://doi.org/10.1007/s12598-024-02746-1.  doi: 10.1007/s12598-024-02746-1

    39. [39]

      Y. P. Yang, C. J. Wang, Y. Z. Li, K. Liu, H. D. Ju, J. Q. Wang, R. Tao, J. Mater. Sci. Technol. 200 (2024) 185, https://doi.org/10.1016/j.jmst.2024.02.062.  doi: 10.1016/j.jmst.2024.02.062

    40. [40]

      X. C. Liu, Y. Xing, New J. Chem. 47 (2023) 21499, https://doi.org/10.1039/D3NJ04318E.  doi: 10.1039/D3NJ04318E

    41. [41]

      D. F. Wang, F. Y. Tan, W. Z. Zhao, S. Y. Zhou, Q. F. Xu, L. X. Kan, L. Zhu, P. Y. Gu, J. M. Lu, Angew. Chem. Int. Ed. 64 (2025) e202425017, https://doi.org/10.1002/anie.202425017.  doi: 10.1002/anie.202425017

    42. [42]

      C. L. Li, H. T. Xu, H. Xiong, S. L. Xia, X. Peng, F. Xu, X. Chen, Adv. Funct. Mater. 34 (2024) 2405539, https://doi.org/10.1002/adfm.202405539.  doi: 10.1002/adfm.202405539

    43. [43]

      K. L. He, E. Campbell, Z. M. Huang, R. C. Shen, Q. Li, S. Q. Zhang, Y. L. Zhong, P. Zhang, X. Li, Small Struct. 3 (2022) 2200104, https://doi.org/10.1002/sstr.202200104.  doi: 10.1002/sstr.202200104

    44. [44]

      Y. Xia, H. Yang, W. K. Ho, B. C. Zhu, J. G. Yu, Appl. Catal. B 344 (2024) 123604, https://doi.org/10.1016/j.apcatb.2023.123604.  doi: 10.1016/j.apcatb.2023.123604

    45. [45]

      R. Y. Zhang, X. W. Jia, M. L. Sun, X. C. Liu, C. Wang, X. D. Yu, Y. Xing, J. Colloid Interface Sci. 677 (2025) 425, https://doi.org/10.1016/j.jcis.2024.07.242.  doi: 10.1016/j.jcis.2024.07.242

    46. [46]

      J. Y. Qiu, K. Meng, Y. Zhang, B. Cheng, J. J. Zhang, L. X. Wang, J. G. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    47. [47]

      L. B. Wang, J. S. Zhao, J. Mater. Sci. Technol. 241 (2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.  doi: 10.1016/j.jmst.2025.04.009

    48. [48]

      X. Y. Xia, J. Feng, Z. C. Zhong, X. Y. Yang, N. J. Li, D. Y. Chen, Y. Y. Li, Q. F. Xu, J. M. Lu, Adv. Funct. Mater. 34 (2023) 2311987, https://doi.org/10.1002/adfm.202311987.  doi: 10.1002/adfm.202311987

    49. [49]

      X. C. Zhang, S. L. Cheng, F. T. Liao, C. Chen, M. C. Long, Rare Met. 43 (2024) 6144, https://doi.org/10.1007/s12598-024-02752-3.  doi: 10.1007/s12598-024-02752-3

    50. [50]

      R. Y. Zhong, Y. J. Liang, F. Huang, S. N. Liang, S. W. Liu, Chin. J. Catal. 53 (2023) 109, https://doi.org/10.1016/S1872-2067(23)64513-9.  doi: 10.1016/S1872-2067(23)64513-9

    51. [51]

      Y. J. Ren, Y. F. Li, G. X. Pan, N. Wang, X. C. Liu, Z. Wu, J. Mater. Sci. Technol. 201 (2024) 12, https://doi.org/10.1016/j.jmst.2024.02.050.  doi: 10.1016/j.jmst.2024.02.050

    52. [52]

      Y. F. Li, S. Wang, W. Chang, L. H. Zhang, Z. S. Wu, R. X, Jin, Y. Xing, Appl. Catal., B 274 (2020) 119116, https://doi.org/10.1016/j.apcatb.2020.119116.  doi: 10.1016/j.apcatb.2020.119116

    53. [53]

      K. Li, J. L. Mei, J. P. Li, Y. S. Liu, G. H. Wang, D. Hu, S. D. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    54. [54]

      L. Hao, R. C. Shen, C. C. Qin, N. Li, H. B. Hu, G. J. Liang, X. Li, Sci. China Mater. 67 (2024) 504, https://doi.org/10.1007/s40843-023-2747-6.  doi: 10.1007/s40843-023-2747-6

    55. [55]

      F. T. He, Y. M. Lu, Y. Z. Wu, S. L. Wang, Y. Zhang, P. Dong, Y. Q. Wang, C. C. Zhao, S. J. Wang, J. Q. Zhang, S. B. Wang, Adv. Mater. 36 (2024) 2307490, https://doi.org/10.1002/adma.202307490.  doi: 10.1002/adma.202307490

    56. [56]

      L. H. Mao, B. J. Zhai, J. W. Shi, X. Kang, B. R. Lu, Y. B. Liu, C. Cheng, H. Jin, E. Lichtfouse, L. J. Guo, ACS Nano 18 (2024) 13939, https://doi.org/10.1021/acsnano.4c03922.  doi: 10.1021/acsnano.4c03922

    57. [57]

      L. N. Du, Q. Y. Tian, X. L. Zheng, W. J. Guo, W. Liu, Y. N. Zhou, F. Shi, Q. Xu, Energy Environ. Mater. 5 (2022) 912, https://doi.org/10.1002/eem2.12209.  doi: 10.1002/eem2.12209

    58. [58]

      Q. Liu, H. Cheng, T. X. Chen, T. Lo, Z. M. Xiang, F. X. Wang, Energy Environ. Sci. 15 (2025) 225, https://doi.org/10.1039/D1EE02073K.  doi: 10.1039/D1EE02073K

    59. [59]

      L. H. Lin, Z. Y. Yu, X. C. Wang, Angew. Chem. Int. Ed. 58 (2019) 6164, https://doi.org/10.1002/anie.201809897.  doi: 10.1002/anie.201809897

    60. [60]

      H. H. Ou, Y. P. Qian, L. T. Yuan, H. Li, L. D. Zhang, S. H. Chen, M. Zhou, G. D. Yang, D. S. Wang, Y. G. Wang, Adv. Mater. 35 (2023) 2305077, https://doi.org/10.1002/adma.202305077.  doi: 10.1002/adma.202305077

    61. [61]

      Q. H. Deng, H. P Li, W. X. Hu, W. G. Hou, Angew. Chem. Int. Ed. 62 (2023) e202314213, https://doi.org/10.1002/anie.202314213.  doi: 10.1002/anie.202314213

    62. [62]

      Z. L. Li, T. C. Li, J. M. Miao, C. X. Zhao, Y. Jing, F. Y. Han, K. Zhang, X. F. Yang, Sci. China Mater. 66 (2023) 2290, https://doi.org/10.1007/s40843-022-2394-6.  doi: 10.1007/s40843-022-2394-6

    63. [63]

      J. M. Zhang, K. W. Liu, B. Y. Zhang, J. F. Zhang, M. Liu, Y. Xu, K. Shi, H. F. Wang, Z. H. Zhang, P. Zhou, G. J. Ma, J. Am. Chem. Soc. 146 (2024) 4068, https://doi.org/10.1021/jacs.3c12417.  doi: 10.1021/jacs.3c12417

    64. [64]

      Y. Qi, B. Y. Zhang, G. H. Zhang, Z. K. Zheng, T. F. Xie, S. S. Chen, G. J. Ma, C. Li, K. Domen, F. X. Zhang, Joule 8 (2024) 191, https://doi.org/10.1016/j.joule.2023.12.005  doi: 10.1016/j.joule.2023.12.005

    65. [65]

      T. Liu, W. Zhu, N. Wang, K. Y. Zhang, X. Wen, Y. Xing, Y. F. Li, Adv. Sci. 10 (2023) 2302503, https://doi.org/10.1002/advs.202302503.  doi: 10.1002/advs.202302503

    66. [66]

      S. J. Li, R. Y. Yan, M. J. Cai, W. Jiang, M. Y. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009.  doi: 10.1016/j.jmst.2023.05.009

    67. [67]

      W. C. Wang, L. D. Du, R. Q. Xia, R. H. Liang, T. Zhou, H. Lee, Z. P. Yan, H. Luo, C. X. Shang, D. Phillips, Z. X. Guo, Energy Environ. Sci. 16 (2023) 460, https://doi.org/10.1039/D2EE02680E.  doi: 10.1039/D2EE02680E

    68. [68]

      Z. C. Jiang, J. J. Zhang, B. Cheng, Y. Zhang, J. G. Yu, L. Y. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    69. [69]

      K. Meng, J. J. Zhang, B. C. Zhu, C. J. Jiang, H. Garcia, J. G. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    70. [70]

      M. Sayed, H. Li, C. B. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    71. [71]

      Y. H. Ma, S. Wang, Y. J. Zhang, B. Cheng, L. Y. Zhang, J. Materiomics. 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    72. [72]

      Y. Yang, X. Zhou, M. L. Gu, B. Cheng, Z. Wu, J. J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    73. [73]

      Y. Zhang, Y. J. Wang, Y. C. Liu, S. M. Zhang, Y. Y. Zhao, J. J. Zhang, J. Materiomics. 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    74. [74]

      X. Zhou, C. B. Ai, X. J. Wang, Z. Wu, J. J. Zhang, J. Materiomics. 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    75. [75]

      L. Wang, C. Y. Fang, B. R. Xu, Y. L. Yu, Y. M. Liu, X. B. Fu, A. Cao, Q. Q. Sun, S. B. Zhou, Angew. Chem. Int. Ed. 64 (2025) e202424984, https://doi.org/10.1002/anie.202424984.  doi: 10.1002/anie.202424984

    76. [76]

      Y. X. Zhang, Q. X. Cao, A. Y. Meng, X. L. Wu, Y. H. Xiao, C. L. Su, Q. T. Zhang, Adv. Mater. 35 (2023) 2306831, https://doi.org/10.1002/adma.202306831.  doi: 10.1002/adma.202306831

    77. [77]

      X. J. Wang, K. Z. Qi, K. Q. Xu, Chin. J. Catal. 70 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.  doi: 10.1016/S1872-2067(24)60246-9

    78. [78]

      T. Y. Gao, X. F. Liu, K. Wang, J. Wang, X. H. Wu, G. H. Wang, J. Colloid Interface Sci. 692 (2025) 137475, https://doi.org/10.1016/j.jcis.2025.137475.  doi: 10.1016/j.jcis.2025.137475

    79. [79]

      R. R. Hao, K. J. Zhang, G. H. Wang, Appl. Surf. Sci. 691 (2025) 162646, https://doi.org/10.1016/j.apsusc.2025.162646.  doi: 10.1016/j.apsusc.2025.162646

    80. [80]

      X. Zhou, S. Y. Yang, X. J. Wang, Z. Wu, Y. T. Huo, J. J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    81. [81]

      Q. Zhou, K. J. Zhang, Y. R. Su, X. H. Wu, T. Y. Gao, G. H. Wang, J. Materiomics. 11 (2025) 100987, https://doi.org/10.1016/j.jmat.2024.100987.  doi: 10.1016/j.jmat.2024.100987

  • 加载中
    1. [1]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    8. [8]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    12. [12]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    13. [13]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    18. [18]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(66)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return