Citation: Yu Liu, Pengfei Li, Yize Liu, Zaicheng Sun. Recent advances in carbon dots as a single photocatalyst[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100167. doi: 10.1016/j.actphy.2025.100167
碳点作为单一光催化剂的最新进展
English
Recent advances in carbon dots as a single photocatalyst
-
Key words:
- Carbon dots
- / Photocatalysis
- / Structural propert
- / Modification
- / Application
-
-
[1]
R. Kumar, D. Kumar, P. E. Lokhande, V. Kadam, C. Jagtap, A. S. Vedapathak, K. Singh, Y. K. Mishra, A. Kaushik, Coord. Chem. Rev. 534 (2025) 216556, https://doi.org/10.1016/j.ccr.2025.216556. doi: 10.1016/j.ccr.2025.216556
-
[2]
S. Zhu, D. Wang, Adv. Energy Mater. 7 (23) (2017) 1700841, https://doi.org/10.1002/aenm.201700841. doi: 10.1002/aenm.201700841
-
[3]
X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Chem. Catal. 2 (6) (2022) 1315, https://doi.org/10.1016/j.checat.2022.04.007. doi: 10.1016/j.checat.2022.04.007
-
[4]
Y. He, P. Li, W. Liu, L. An, D. Qu, X. Wang, Z. Sun, Nano Res. 16 (4) (2023) 4620, https://doi.org/10.1007/s12274-022-5078-8. doi: 10.1007/s12274-022-5078-8
-
[5]
Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B: Environ. 26 (2013) 138, https://doi.org/10.1016/j.apcatb.2013.02.011. doi: 10.1016/j.apcatb.2013.02.011
-
[6]
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (50) (2019) 1901997, https://doi.org/10.1002/adma.201901997. doi: 10.1002/adma.201901997
-
[7]
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. Lee, J. Zhong, Z. Kang, Science 347 (6225) (2015) 970, https://doi.org/10.1126/science.aaa3145. doi: 10.1126/science.aaa3145
-
[8]
S. Manzoor, M. Younis, Y. Yao, Q. Tariq, B. Zhang, B. Tian, L. Yan, C. Qiu, Coord. Chem. Rev. 541 (2025) 216840, https://doi.org/10.1016/j.ccr.2025.216840. doi: 10.1016/j.ccr.2025.216840
-
[9]
C. Bie, L. Wang, J. Yu, Chem 8 (6) (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013. doi: 10.1016/j.chempr.2022.04.013
-
[10]
J. B. Varley, A. Janotti, C. G. Van de Walle, Adv. Mater. 23 (20) (2011) 2343, https://doi.org/10.1002/adma.201003603. doi: 10.1002/adma.201003603
-
[11]
J. Wang, S. He, M. Zhang, F. Yang, Q. Zhang, Z. Li, M. Robert, Adv. Energy Mater. 15 (25) (2025) 2406048, https://doi.org/10.1002/aenm.202406048. doi: 10.1002/aenm.202406048
-
[12]
K. Meng, J, Zhang, B. Cheng, X, Ren, Z. Xia, F. Xu, L, Zhang, J. Yu, Adv. Mater. 36 (32) (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460
-
[13]
Q. Li, S, Zhao, B, Jiang, M. Jaroniec, Zhang, L. Zhang, Mater. Today 80 (2024) 886, https://doi.org/10.1016/j.mattod.2024.09.019. doi: 10.1016/j.mattod.2024.09.019
-
[14]
C. Feng, Z. Wu, K. Huang, Ye, J. Ye, H, Zhang, Adv. Mater. 34 (23) (2022) 2200180, https://doi.org/10.1002/adma.202200180. doi: 10.1002/adma.202200180
-
[15]
X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 126 (40) (2004) 12736, https://doi.org/10.1021/ja040082h. doi: 10.1021/ja040082h
-
[16]
Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128 (24) (2006) 7756, https://doi.org/10.1021/ja062677d. doi: 10.1021/ja062677d
-
[17]
G. A. Hutton, B. C. Martindale, E. Reisner, Chem. Soc. Rev. 46 (20) (2017) 6111, https://doi.org/10.1039/C7CS00235A. doi: 10.1039/C7CS00235A
-
[18]
H. Ma, T. Wang, Y. Xu, W. Shi, R. Ma, Z. Xia, Q. Yang, G. Xie, S. Chen, Appl. Catal. B: Environ. Energy 349 (2024) 123857, https://doi.org/10.1016/j.apcatb.2024.123857. doi: 10.1016/j.apcatb.2024.123857
-
[19]
L. Zdražil, A. Cadranel, M. Medved', M. Otyepka, R. Zbořil, D. M. Guldi, Chem 10 (9) (2024) 2700, https://doi.org/10.1016/j.chempr.2024.07.018. doi: 10.1016/j.chempr.2024.07.018
-
[20]
J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X. Li, Green Chem. 25 (1) (2023) 32, https://doi.org/10.1039/D2GC03160D doi: 10.1039/D2GC03160D
-
[21]
Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023. doi: 10.1016/j.jmst.2023.08.023
-
[22]
A. Mei, Z. Xu, X. Wang, Y. Liu, J. Chen, J. Q. Shi, Environ. Res. 214 (2022) 114160, https://doi.org/10.1016/j.envres.2022.114160. doi: 10.1016/j.envres.2022.114160
-
[23]
Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, S. Wang, J. Environ. Chem. Eng. 10 (2) (2022) 107336, https://doi.org/10.1016/j.jece.2022.107336. doi: 10.1016/j.jece.2022.107336
-
[24]
C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Zhao, Y. Liu, J. Hazard. Mater. 424 (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721. doi: 10.1016/j.jhazmat.2021.127721
-
[25]
D. Saini, A. K. Garg, C. Dalal, S. R. Anand, S. K. Sonkar, A. K. Sonker, G. Westman, ACS Appl. Nano Mater. 5 (3) (2022) 3087, https://doi.org/10.1021/acsanm.1c04142. doi: 10.1021/acsanm.1c04142
-
[26]
K. Akbar, E. Moretti, A. Vomiero, Adv. Opt. Mater. 9 (17) (2021) 2100532, https://doi.org/10.1002/adom.202100532 doi: 10.1002/adom.202100532
-
[27]
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H, Wang, B. Yang, Angew. Chem. Int. Ed. 52 (14) (2013) 3953, https://doi.org/10.1002/anie.201300519. doi: 10.1002/anie.201300519
-
[28]
H. Liu, X. Zhong, Q. Pan, Y. Zhang, W, Deng, G. Zou, H. Hou, X. Ji, Coord. Chem. Rev. 498 (2024) 215468, https://doi.org/10.1016/j.ccr.2023.215468. doi: 10.1016/j.ccr.2023.215468
-
[29]
N. V. Tepliakov, E. V. Kundelev, P. D. Khavlyuk, Y. Xiong, M. Y. Leonov, W. Zhu, A. V. Baranov, A. V. Fedorov, A. L. Rogach, I. D. Rukhlenko, ACS Nano 13 (9) (2019) 10737, https://doi.org/10.1021/acsnano.9b05444. doi: 10.1021/acsnano.9b05444
-
[30]
M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, J. Mater. Chem. C 2 (34) (2014) 6954, https://doi.org/10.1039/C4TC01191K. doi: 10.1039/C4TC01191K
-
[31]
H. Yoon, Y. Chang, S. Song, E. S. Lee, S. Jin, C. Park, J. Lee, B. H. Kim, H. J. Kang, Y. H. Kim, et al., Adv. Mater. 28 (26) (2016) 5255, https://doi.org/10.1002/adma.201600616 doi: 10.1002/adma.201600616
-
[32]
J. Qin, C. Shen, L. Li, H. Liu, W. Zhang, X. Yang, C. Shan, Adv. Mater. 36 (32) (2024) 2404694, https://doi.org/10.1002/adma.202404694. doi: 10.1002/adma.202404694
-
[33]
J. Xu, Q. Liang, Z. Li, V. Y. Osipov, Y. Lin, B. Ge, Q. Xu, J. Zhu, H. Bi, Adv. Mater. 34 (17) (2022) 2200011, https://doi.org/10.1002/adma.202200011 doi: 10.1002/adma.202200011
-
[34]
N. A. Rano, N. Martsinovich, Phys. Chem. A 129 (17) (2025) 3790, https://doi.org/10.1021/acs.jpca.4c07825 doi: 10.1021/acs.jpca.4c07825
-
[35]
L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. I. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (12) (2023) e202217822, https://doi.org/10.1002/anie.202217822. doi: 10.1002/anie.202217822
-
[36]
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, S. T. Lee, Angew. Chem. Int. Ed. 49 (26) (2010) 4430, https://doi.org/10.1002/anie.200906154. doi: 10.1002/anie.200906154
-
[37]
L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, et al., Sci. Adv. 6 (40) (2020) eabb6772, https://doi.org/10.1126/sciadv.abb6772. doi: 10.1126/sciadv.abb6772
-
[38]
P. Li, S. Xue, L. Sun, X. Zong, L. An, D. Qu, X. Wang, Z. Sun, Light Sci. Appl. 11 (1) (2022) 298, https://doi.org/10.1038/s41377-022-00984-5. doi: 10.1038/s41377-022-00984-5
-
[39]
S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296, https://doi.org/10.1016/j.nanoen.2018.08.058. doi: 10.1016/j.nanoen.2018.08.058
-
[40]
Q. Fu, S. Sun, N. Li, K. Lu, Z. Dong, Mater. Today Chem. 34 (2023) 101769, https://doi.org/10.1016/j.mtchem.2023.101769. doi: 10.1016/j.mtchem.2023.101769
-
[41]
H. Zhang, J. Bai, X. Chen, L. Wang, W. Peng, Y. Zhao, J. Weng, W. Zhi, J. Wang, J. Colloid Interface Sci. 678 (2025) 77, https://doi.org/10.1016/j.jcis.2024.08.073. doi: 10.1016/j.jcis.2024.08.073
-
[42]
Y. Pan, Z. Wei, M. Ma, X. Zhang, Z. Chi, Y. He, X. Wang, X. Ran, L. Guo, Nanoscale 14 (15) (2022) 5794, https://doi.org/10.1039/D2NR00211F. doi: 10.1039/D2NR00211F
-
[43]
R. Yadav, Vikas, V. Lahariya, M. Tanwar, R. Kumar, A. Das, K. Sadhana, Diamond Relat. Mater. 139 (2023) 110411, https://doi.org/10.1016/j.diamond.2023.110411. doi: 10.1016/j.diamond.2023.110411
-
[44]
F. Parmeggiani, D. Gemmati, C. Costagliola, F. Semeraro, P. Perri, S. D'Angelo, M. R. Romano, K. De Nadai, A. Sebastiani, C. Incorvaia, Mol. Diagn. Ther. 15 (4) (2011) 195, https://doi.org/10.1007/BF03256411. doi: 10.1007/BF03256411
-
[45]
M. Makaremi, S. Grixti, K. T. Butler, G. A. Ozin, C. V. Singh, ACS Appl. Mater. Interfaces 10 (13) (2018) 11143. https://doi.org/10.1021/acsami.8b01729. doi: 10.1021/acsami.8b01729
-
[46]
M. A. Khan, S. Mutahir, I. Shaheen, Y. Qunhui, M. Bououdina, M. Humayun, Coord. Chem. Rev. 522 (2025) 216227, https://doi.org/10.1016/j.ccr.2024.216227. doi: 10.1016/j.ccr.2024.216227
-
[47]
C. Ye, L. Xu, S. Chen, C. Wang, M. Su, G. Dai, X. Wang, F. Li, Y. Song, Dyes Pigm. 184 (2021) 108772, https://doi.org/10.1016/j.dyepig.2020.108772. doi: 10.1016/j.dyepig.2020.108772
-
[48]
J. Fang, Y. Wang, M. Kurashvili, S. Rieger, W. Kasprzyk, Q. Wang, J. Stolarczyk, J. Feldmann, T. Debnath, Angew. Chem. Int. Ed. 62 (33) (2023) e202305817, https://doi.org/10.1002/anie.202305817. doi: 10.1002/anie.202305817
-
[49]
D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay-Gürer, L. A. Mai, R. W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64 (13) (2025) e202418626, https://doi.org/10.1002/anie.202418626. doi: 10.1002/anie.202418626
-
[50]
R. M. Mathew, J. John, E. S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Joseph, V. Thomas, React. Kinet. Mech. Catal. 129 (2) (2020) 1131, https://doi.org/10.1007/s11144-020-01724-9. doi: 10.1007/s11144-020-01724-9
-
[51]
G. Jiang, J. Fan, Y. Wan, J. Li, F. Pi, Chem. Eng. J. 480 (2024) 148216, https://doi.org/10.1016/j.cej.2023.148216. doi: 10.1016/j.cej.2023.148216
-
[52]
Z. Peng, Y. Zhou, C. Ji, J. Pardo, K. J. Mintz, R. R. Pandey, C. C. Chusuei, R. M. Graham, G. Yan, R. M. Leblanc, Nanomaterials 10 (8) (2020) 1560, https://doi.org/10.3390/nano10081560. doi: 10.3390/nano10081560
-
[53]
S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Nanoscale 5 (23) (2013) 11665. https://doi.org/10.1039/C3NR03893A. doi: 10.1039/C3NR03893A
-
[54]
K. Yaemsunthorn, A. Sysło, D. Krok-Janiszewska, W. Kasprzyk, K. Spilarewicz, M. Pacia, W. Thongpan, M. Kobielusz, W. Macyk, J. Ortyl, Carbon 234 (2025) 119967. https://doi.org/10.1016/j.carbon.2024.119967. doi: 10.1016/j.carbon.2024.119967
-
[55]
H. J. Yashwanth, S. R. Rondiya, N. Y. Dzade, S. D. Dhole, D. M. Phase, K. Hareesh, Vacuum 180 (2020) 109589, https://doi.org/10.1016/j.vacuum.2020.109589. doi: 10.1016/j.vacuum.2020.109589
-
[56]
X. Yang, L. Ai, J. Yu, G. I. Waterhouse, L. Sui, J. Ding, B. Zhang, X. Yong, S. Lu, Sci. Bull. 67 (14) (2022) 1450, https://doi.org/10.1016/j.scib.2022.06.013. doi: 10.1016/j.scib.2022.06.013
-
[57]
Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (11) (2023) 2207566. https://doi.org/10.1002/advs.202207566. doi: 10.1002/advs.202207566
-
[58]
R. Umami, F. A. Permatasari, D. A. Muyassiroh, A. S. Santika, C. D. Sundari, A. L. Ivansyah, T. Ogi, F. Iskandar, J. Mater. Chem. C 10 (4) (2022) 1394, https://doi.org/10.1039/D1TC04951H. doi: 10.1039/D1TC04951H
-
[59]
D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, J. Phys. Chem. Lett. 12 (37) (2021) 8939, https://doi.org/10.1021/acs.jpclett.1c02475. doi: 10.1021/acs.jpclett.1c02475
-
[60]
W. U. Khan, L. Qin, W. U. Khan, S. U. Khan, M. M. Hussain, F. Ahmed, S. Kamal, P. Zhou, ACS Appl. Nano Mater. 6 (19) (2023) 17838, https://doi.org/10.1021/acsanm.3c03131. doi: 10.1021/acsanm.3c03131
-
[61]
B. Kommula, S. Chakraborty, M. Banoo, R. S. Roy, S. Sil, A. Swarnkar, B. Rawat, K. Kailasam, U. K. Gautam, ACS Appl. Mater. Interfaces 16 (30) (2024) 39470, https://doi.org/10.1021/acsami.4c08635. doi: 10.1021/acsami.4c08635
-
[62]
L. Zdražil, Z. Baďura, M. Langer, S. Kalytchuk, D. Panáček, M. Scheibe, Š. Kment, H. Kmentová, M. A. Thottappali, E. Mohammadi, et al., Small 19 (32) (2023) 2206587, https://doi.org/10.1002/smll.202206587. doi: 10.1002/smll.202206587
-
[63]
W. Han, D. Li, X. Hu, W. Qin, H. Sun, S. Wang, X. Duan, Mater. Today Chem. 30 (2023) 101546, https://doi.org/10.1016/j.mtchem.2023.101546. doi: 10.1016/j.mtchem.2023.101546
-
[64]
H. Qin, L. Sun, S. Zou, A. Bian, Y. Cui, J. Hou, C. Lu, C. Li, F. Guo, W. Shi, Chem. Eng. J. 499 (2024) 156239, https://doi.org/10.1016/j.cej.2024.156239. doi: 10.1016/j.cej.2024.156239
-
[65]
H. Qin, K. Sun, P. Hao, H. Yuan, Y. Shen, A. Bian, Y. Cui, J. Hou, W. Shi, C. Li, et al., J. Catal. 435 (2024) 115579, https://doi.org/10.1016/j.jcat.2024.115579. doi: 10.1016/j.jcat.2024.115579
-
[66]
K. Niu, C. Ma, R. Dong, H. Liu, S. Yu, L. Xing, Nano Res. 17 (6) (2024) 4825, https://doi.org/10.1007/s12274-024-6451-6. doi: 10.1007/s12274-024-6451-6
-
[67]
L. Morbiato, L. Cardo, E. Sturabotti, P. Gobbo, G. Filippini, M. Prato, ACS Nano 19 (4) (2025) 4887, https://doi.org/10.1021/acsnano.4c16538. doi: 10.1021/acsnano.4c16538
-
[68]
D. Sarma, B. Majumdar, T. K. Sarma, ACS Sustain. Chem. Eng. 6 (12) (2018) 16573, https://doi.org/10.1021/acssuschemeng.8b03811. doi: 10.1021/acssuschemeng.8b03811
-
[69]
Q. Wang, J. Li, X. Tu, H. Liu, M. Shu, R. Si, C. T. Ferguson, K. Zhang, R. Li, Chem. Mater. 32 (2) (2020) 734, https://doi.org/10.1021/acs.chemmater.9b03708. doi: 10.1021/acs.chemmater.9b03708
-
[70]
T. Zhang, B. Huang, H. Huang, A. Yan, S. Lu, X. Qian, Chin. Chem. Lett. (2025) 110885, https://doi.org/10.1016/j.cclet.2025.110885. doi: 10.1016/j.cclet.2025.110885
-
[71]
W. Wu, Q. Zhang, R. Wang, Y. Zhao, Z. Li, H. Ning, Q. Zhao, Wiederrecht, G. P.; J. Qiu, M. Wu, ACS Catal. 8 (2) (2018) 747, https://doi.org/10.1021/acscatal.7b03423. doi: 10.1021/acscatal.7b03423
-
[72]
J. Yang, S. He, H. Liu, E. Jaatinen, E. Waclawik, J. Quan, S. Sarina, C. He, S. Huang, H. Zhu, et al., J. Mater. Chem. A 11 (9) (2023) 4751, https://doi.org/10.1039/D2TA09982A. doi: 10.1039/D2TA09982A
-
[73]
F. Tong, X. Liang, X. Bao, Z. Zheng, ACS Catal. 14 (15) (2024) 11425, https://doi.org/10.1021/acscatal.4c03566. doi: 10.1021/acscatal.4c03566
-
[74]
P. Ghosh, D. Bairagi, N. Hazra, S. Jana, A. Banerjee, ACS Appl. Nano Mater. 6 (19) (2023) 18100, https://doi.org/10.1021/acsanm.3c03380. doi: 10.1021/acsanm.3c03380
-
[75]
S. Bibi, N. Shakir, M. Sadiq, S. Sadiq, I. Ullah, Q. Khan, B. Bostan, M. Ismail, J. Mol. Struct. 1312 (2024) 138488, https://doi.org/10.1016/j.molstruc.2024.138488. doi: 10.1016/j.molstruc.2024.138488
-
[76]
J. Fang, T. Debnath, S. Bhattacharyya, M. Döblinger, J. Feldmann, J. K. Stolarczyk, Nat. Commun. 11 (1) (2020) 5179, https://doi.org/10.1038/s41467-020-18583-6. doi: 10.1038/s41467-020-18583-6
-
[77]
B. Martindale, G. Hutton, C. Caputo, S. Prantl, R. Godin, J. R. Durrant, E. Reisner, Angew. Chem. Int. Ed. 56 (23) (2017) 6459, https://doi.org/10.1002/anie.201700949. doi: 10.1002/anie.201700949
-
[78]
X. Ou, X. Chen, S. Zhao, Y. Shi, J. Zhang, M. Wu, A. J. Ragauskas, X. Song, Z. Zhang, Small 21 (6) (2025) 2408200, https://doi.org/10.1002/smll.202408200. doi: 10.1002/smll.202408200
-
[79]
Q. Zhang, Y. Zhang, H. Shi, H. Zhang, J. Zhao, Z. Zheng, H. Yang, P. Yang, Aggregate 5 (1) (2024) e424, https://doi.org/10.1002/agt2.424. doi: 10.1002/agt2.424
-
[80]
L. Jiang, S. Xie, H. Chen, J. Yang, X. Wang, W. Li, X. Peng, Z. Wu, H. Wang, J. Wang, et al., Appl. Catal. B: Environ. Energy 365 (2025) 124881, https://doi.org/10.1016/j.apcatb.2024.124881. doi: 10.1016/j.apcatb.2024.124881
-
[81]
X. Liu, Y. Wang, Y. Gu, W. Lu, Chem. Eng. J. 499 (2024) 156573, https://doi.org/10.1016/j.cej.2024.156573. doi: 10.1016/j.cej.2024.156573
-
[82]
Y. Zhou, E. Zahran, B. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, R. M. Leblanc, Appl. Catal. B: Environ. 248 (2019) 157, https://doi.org/10.1016/j.apcatb.2019.02.019. doi: 10.1016/j.apcatb.2019.02.019
-
[83]
Y. Bakier, H. M. El-Bery, Environ. Chem. Eng. 11 (6) (2023) 111493, https://doi.org/10.1016/j.jece.2023.111493. doi: 10.1016/j.jece.2023.111493
-
[84]
W. Han, H. Zhang, D. Li, W. Qin, X. Zhang, S. Wang, X. Duan, Appl. Catal. B: Environ. Energy 350 (2024) 123918, https://doi.org/10.1016/j.apcatb.2024.123918. doi: 10.1016/j.apcatb.2024.123918
-
[85]
N. Meng, M. Zhou, X. Zhang, L. Ma, S. Ding, W. Wang, Chem. Eng. J. 503 (2025) 158432, https://doi.org/10.1016/j.cej.2024.158432. doi: 10.1016/j.cej.2024.158432
-
[86]
M. Gu, D. Y. Lee, J. Mun, D. Kim, H. Cho, B. Kim, W. Kim, G. Lee, B. S. Kim, H. I. Kim, Appl. Catal. B: Environ. 312 (2022) 121379, https://doi.org/10.1016/j.apcatb.2022.121379. doi: 10.1016/j.apcatb.2022.121379
-
[87]
J. Wang, J, Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, et al., Nano Res. 17 (7) (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4. doi: 10.1007/s12274-024-6623-4
-
[88]
H. Li, C. Sun, M. Ali, F. Zhou, X. Zhang, D. R. MacFarlane, Angew. Chem. Int. Ed. 54 (29) (2015) 8420, https://doi.org/10.1002/anie.201501698. doi: 10.1002/anie.201501698
-
[89]
Z. Liu, B. Chen, M. Liu, H. Zou, C. Huang, Green Chem. 19 (6) (2017) 1494, https://doi.org/10.1039/C6GC03288E. doi: 10.1039/C6GC03288E
-
[90]
S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13 (21) (2023) 14233, https://doi.org/10.1021/acscatal.3c03180 doi: 10.1021/acscatal.3c03180
-
[91]
Z. Zhao, B. Pieber, M. Delbianco, ACS Catal. 12 (22) (2022) 13831, https://doi.org/10.1021/acscatal.2c04025. doi: 10.1021/acscatal.2c04025
-
[92]
C. Campalani, M. Durai, W. Leitner, A. Bordet, Green Chem. 27 (10) (2025) 2666, https://doi.org/10.1039/D4GC05468G. doi: 10.1039/D4GC05468G
-
[93]
D. Guo, J. Lei, D. Rong, T. Zhang, B. Zhang, Z. Tang, H. Shen, C. Deng, S. Qu, Adv. Sci. 9 (36) (2022) 2205106, https://doi.org/10.1002/advs.202205106. doi: 10.1002/advs.202205106
-
[94]
H. Wang, Q. Wang, Q. Wang, W. Dong, Y. Liu, Q. Hu, X. Song, S. Shuang, C. Dong, X. Gong, J. Clean. Prod. 411 (2023) 137337, https://doi.org/10.1016/j.jclepro.2023.137337. doi: 10.1016/j.jclepro.2023.137337
-
[95]
Gunture, T. Y. Lee, NPJ Clean Water 7 (1) (2024) 132, https://doi.org/10.1038/s41545-024-00426-2. doi: 10.1038/s41545-024-00426-2
-
[96]
Y. Xiao, Z. Xia, W. Hu, B. Liu, C. Lü, Small 20 (32) (2024), 2309893, http://doi.org/10.1002/smll.202309893. doi: 10.1002/smll.202309893
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 14
- HTML全文浏览量: 2

下载: