碳点作为单一光催化剂的最新进展

刘宇 李鹏飞 刘翼泽 孙再成

引用本文: 刘宇, 李鹏飞, 刘翼泽, 孙再成. 碳点作为单一光催化剂的最新进展[J]. 物理化学学报, 2026, 42(2): 100167. doi: 10.1016/j.actphy.2025.100167 shu
Citation:  Yu Liu, Pengfei Li, Yize Liu, Zaicheng Sun. Recent advances in carbon dots as a single photocatalyst[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100167. doi: 10.1016/j.actphy.2025.100167 shu

碳点作为单一光催化剂的最新进展

    通讯作者: Email: sunzc@bjut.edu.cn (孙再成)
摘要: 碳点(CDs)作为一种极具前景的多功能碳纳米材料,因其对可见光的强吸收、良好的光学性能以及可调的能隙结构,在光催化领域成为热门研究课题。近年来,人们致力于通过将碳点与其他催化剂结合形成复合物来提高其催化性能。除此之外,碳点在多个领域也展现出良好的催化性能。然而,专注于碳点作为单一组分光催化剂的光催化性能及机制的综述较为缺乏。深入了解碳点的内在结构特征及调控策略对于进一步推进其光催化应用至关重要。本综述系统地总结了碳点的固有结构特征、性能提升策略(包括元素掺杂和表面功能化)以及其作为单一组分催化剂在各种光催化反应中的应用。

English

    1. [1]

      R. Kumar, D. Kumar, P. E. Lokhande, V. Kadam, C. Jagtap, A. S. Vedapathak, K. Singh, Y. K. Mishra, A. Kaushik, Coord. Chem. Rev. 534 (2025) 216556, https://doi.org/10.1016/j.ccr.2025.216556. doi: 10.1016/j.ccr.2025.216556

    2. [2]

      S. Zhu, D. Wang, Adv. Energy Mater. 7 (23) (2017) 1700841, https://doi.org/10.1002/aenm.201700841. doi: 10.1002/aenm.201700841

    3. [3]

      X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Chem. Catal. 2 (6) (2022) 1315, https://doi.org/10.1016/j.checat.2022.04.007. doi: 10.1016/j.checat.2022.04.007

    4. [4]

      Y. He, P. Li, W. Liu, L. An, D. Qu, X. Wang, Z. Sun, Nano Res. 16 (4) (2023) 4620, https://doi.org/10.1007/s12274-022-5078-8. doi: 10.1007/s12274-022-5078-8

    5. [5]

      Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Appl. Catal. B: Environ. 26 (2013) 138, https://doi.org/10.1016/j.apcatb.2013.02.011. doi: 10.1016/j.apcatb.2013.02.011

    6. [6]

      Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (50) (2019) 1901997, https://doi.org/10.1002/adma.201901997. doi: 10.1002/adma.201901997

    7. [7]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. Lee, J. Zhong, Z. Kang, Science 347 (6225) (2015) 970, https://doi.org/10.1126/science.aaa3145. doi: 10.1126/science.aaa3145

    8. [8]

      S. Manzoor, M. Younis, Y. Yao, Q. Tariq, B. Zhang, B. Tian, L. Yan, C. Qiu, Coord. Chem. Rev. 541 (2025) 216840, https://doi.org/10.1016/j.ccr.2025.216840. doi: 10.1016/j.ccr.2025.216840

    9. [9]

      C. Bie, L. Wang, J. Yu, Chem 8 (6) (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013. doi: 10.1016/j.chempr.2022.04.013

    10. [10]

      J. B. Varley, A. Janotti, C. G. Van de Walle, Adv. Mater. 23 (20) (2011) 2343, https://doi.org/10.1002/adma.201003603. doi: 10.1002/adma.201003603

    11. [11]

      J. Wang, S. He, M. Zhang, F. Yang, Q. Zhang, Z. Li, M. Robert, Adv. Energy Mater. 15 (25) (2025) 2406048, https://doi.org/10.1002/aenm.202406048. doi: 10.1002/aenm.202406048

    12. [12]

      K. Meng, J, Zhang, B. Cheng, X, Ren, Z. Xia, F. Xu, L, Zhang, J. Yu, Adv. Mater. 36 (32) (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    13. [13]

      Q. Li, S, Zhao, B, Jiang, M. Jaroniec, Zhang, L. Zhang, Mater. Today 80 (2024) 886, https://doi.org/10.1016/j.mattod.2024.09.019. doi: 10.1016/j.mattod.2024.09.019

    14. [14]

      C. Feng, Z. Wu, K. Huang, Ye, J. Ye, H, Zhang, Adv. Mater. 34 (23) (2022) 2200180, https://doi.org/10.1002/adma.202200180. doi: 10.1002/adma.202200180

    15. [15]

      X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 126 (40) (2004) 12736, https://doi.org/10.1021/ja040082h. doi: 10.1021/ja040082h

    16. [16]

      Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, et al., J. Am. Chem. Soc. 128 (24) (2006) 7756, https://doi.org/10.1021/ja062677d. doi: 10.1021/ja062677d

    17. [17]

      G. A. Hutton, B. C. Martindale, E. Reisner, Chem. Soc. Rev. 46 (20) (2017) 6111, https://doi.org/10.1039/C7CS00235A. doi: 10.1039/C7CS00235A

    18. [18]

      H. Ma, T. Wang, Y. Xu, W. Shi, R. Ma, Z. Xia, Q. Yang, G. Xie, S. Chen, Appl. Catal. B: Environ. Energy 349 (2024) 123857, https://doi.org/10.1016/j.apcatb.2024.123857. doi: 10.1016/j.apcatb.2024.123857

    19. [19]

      L. Zdražil, A. Cadranel, M. Medved', M. Otyepka, R. Zbořil, D. M. Guldi, Chem 10 (9) (2024) 2700, https://doi.org/10.1016/j.chempr.2024.07.018. doi: 10.1016/j.chempr.2024.07.018

    20. [20]

      J. Wang, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, X. Li, Green Chem. 25 (1) (2023) 32, https://doi.org/10.1039/D2GC03160D doi: 10.1039/D2GC03160D

    21. [21]

      Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023. doi: 10.1016/j.jmst.2023.08.023

    22. [22]

      A. Mei, Z. Xu, X. Wang, Y. Liu, J. Chen, J. Q. Shi, Environ. Res. 214 (2022) 114160, https://doi.org/10.1016/j.envres.2022.114160. doi: 10.1016/j.envres.2022.114160

    23. [23]

      Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, S. Wang, J. Environ. Chem. Eng. 10 (2) (2022) 107336, https://doi.org/10.1016/j.jece.2022.107336. doi: 10.1016/j.jece.2022.107336

    24. [24]

      C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Zhao, Y. Liu, J. Hazard. Mater. 424 (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721. doi: 10.1016/j.jhazmat.2021.127721

    25. [25]

      D. Saini, A. K. Garg, C. Dalal, S. R. Anand, S. K. Sonkar, A. K. Sonker, G. Westman, ACS Appl. Nano Mater. 5 (3) (2022) 3087, https://doi.org/10.1021/acsanm.1c04142. doi: 10.1021/acsanm.1c04142

    26. [26]

      K. Akbar, E. Moretti, A. Vomiero, Adv. Opt. Mater. 9 (17) (2021) 2100532, https://doi.org/10.1002/adom.202100532 doi: 10.1002/adom.202100532

    27. [27]

      S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H, Wang, B. Yang, Angew. Chem. Int. Ed. 52 (14) (2013) 3953, https://doi.org/10.1002/anie.201300519. doi: 10.1002/anie.201300519

    28. [28]

      H. Liu, X. Zhong, Q. Pan, Y. Zhang, W, Deng, G. Zou, H. Hou, X. Ji, Coord. Chem. Rev. 498 (2024) 215468, https://doi.org/10.1016/j.ccr.2023.215468. doi: 10.1016/j.ccr.2023.215468

    29. [29]

      N. V. Tepliakov, E. V. Kundelev, P. D. Khavlyuk, Y. Xiong, M. Y. Leonov, W. Zhu, A. V. Baranov, A. V. Fedorov, A. L. Rogach, I. D. Rukhlenko, ACS Nano 13 (9) (2019) 10737, https://doi.org/10.1021/acsnano.9b05444. doi: 10.1021/acsnano.9b05444

    30. [30]

      M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, J. Mater. Chem. C 2 (34) (2014) 6954, https://doi.org/10.1039/C4TC01191K. doi: 10.1039/C4TC01191K

    31. [31]

      H. Yoon, Y. Chang, S. Song, E. S. Lee, S. Jin, C. Park, J. Lee, B. H. Kim, H. J. Kang, Y. H. Kim, et al., Adv. Mater. 28 (26) (2016) 5255, https://doi.org/10.1002/adma.201600616 doi: 10.1002/adma.201600616

    32. [32]

      J. Qin, C. Shen, L. Li, H. Liu, W. Zhang, X. Yang, C. Shan, Adv. Mater. 36 (32) (2024) 2404694, https://doi.org/10.1002/adma.202404694. doi: 10.1002/adma.202404694

    33. [33]

      J. Xu, Q. Liang, Z. Li, V. Y. Osipov, Y. Lin, B. Ge, Q. Xu, J. Zhu, H. Bi, Adv. Mater. 34 (17) (2022) 2200011, https://doi.org/10.1002/adma.202200011 doi: 10.1002/adma.202200011

    34. [34]

      N. A. Rano, N. Martsinovich, Phys. Chem. A 129 (17) (2025) 3790, https://doi.org/10.1021/acs.jpca.4c07825 doi: 10.1021/acs.jpca.4c07825

    35. [35]

      L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. I. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (12) (2023) e202217822, https://doi.org/10.1002/anie.202217822. doi: 10.1002/anie.202217822

    36. [36]

      H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, S. T. Lee, Angew. Chem. Int. Ed. 49 (26) (2010) 4430, https://doi.org/10.1002/anie.200906154. doi: 10.1002/anie.200906154

    37. [37]

      L. Wang, W. Li, L. Yin, Y. Liu, H. Guo, J. Lai, Y. Han, G. Li, M. Li, J. Zhang, et al., Sci. Adv. 6 (40) (2020) eabb6772, https://doi.org/10.1126/sciadv.abb6772. doi: 10.1126/sciadv.abb6772

    38. [38]

      P. Li, S. Xue, L. Sun, X. Zong, L. An, D. Qu, X. Wang, Z. Sun, Light Sci. Appl. 11 (1) (2022) 298, https://doi.org/10.1038/s41377-022-00984-5. doi: 10.1038/s41377-022-00984-5

    39. [39]

      S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296, https://doi.org/10.1016/j.nanoen.2018.08.058. doi: 10.1016/j.nanoen.2018.08.058

    40. [40]

      Q. Fu, S. Sun, N. Li, K. Lu, Z. Dong, Mater. Today Chem. 34 (2023) 101769, https://doi.org/10.1016/j.mtchem.2023.101769. doi: 10.1016/j.mtchem.2023.101769

    41. [41]

      H. Zhang, J. Bai, X. Chen, L. Wang, W. Peng, Y. Zhao, J. Weng, W. Zhi, J. Wang, J. Colloid Interface Sci. 678 (2025) 77, https://doi.org/10.1016/j.jcis.2024.08.073. doi: 10.1016/j.jcis.2024.08.073

    42. [42]

      Y. Pan, Z. Wei, M. Ma, X. Zhang, Z. Chi, Y. He, X. Wang, X. Ran, L. Guo, Nanoscale 14 (15) (2022) 5794, https://doi.org/10.1039/D2NR00211F. doi: 10.1039/D2NR00211F

    43. [43]

      R. Yadav, Vikas, V. Lahariya, M. Tanwar, R. Kumar, A. Das, K. Sadhana, Diamond Relat. Mater. 139 (2023) 110411, https://doi.org/10.1016/j.diamond.2023.110411. doi: 10.1016/j.diamond.2023.110411

    44. [44]

      F. Parmeggiani, D. Gemmati, C. Costagliola, F. Semeraro, P. Perri, S. D'Angelo, M. R. Romano, K. De Nadai, A. Sebastiani, C. Incorvaia, Mol. Diagn. Ther. 15 (4) (2011) 195, https://doi.org/10.1007/BF03256411. doi: 10.1007/BF03256411

    45. [45]

      M. Makaremi, S. Grixti, K. T. Butler, G. A. Ozin, C. V. Singh, ACS Appl. Mater. Interfaces 10 (13) (2018) 11143. https://doi.org/10.1021/acsami.8b01729. doi: 10.1021/acsami.8b01729

    46. [46]

      M. A. Khan, S. Mutahir, I. Shaheen, Y. Qunhui, M. Bououdina, M. Humayun, Coord. Chem. Rev. 522 (2025) 216227, https://doi.org/10.1016/j.ccr.2024.216227. doi: 10.1016/j.ccr.2024.216227

    47. [47]

      C. Ye, L. Xu, S. Chen, C. Wang, M. Su, G. Dai, X. Wang, F. Li, Y. Song, Dyes Pigm. 184 (2021) 108772, https://doi.org/10.1016/j.dyepig.2020.108772. doi: 10.1016/j.dyepig.2020.108772

    48. [48]

      J. Fang, Y. Wang, M. Kurashvili, S. Rieger, W. Kasprzyk, Q. Wang, J. Stolarczyk, J. Feldmann, T. Debnath, Angew. Chem. Int. Ed. 62 (33) (2023) e202305817, https://doi.org/10.1002/anie.202305817. doi: 10.1002/anie.202305817

    49. [49]

      D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay-Gürer, L. A. Mai, R. W. Crisp, I. Engelmann, E. Spiecker, et al., Angew. Chem. Int. Ed. 64 (13) (2025) e202418626, https://doi.org/10.1002/anie.202418626. doi: 10.1002/anie.202418626

    50. [50]

      R. M. Mathew, J. John, E. S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Joseph, V. Thomas, React. Kinet. Mech. Catal. 129 (2) (2020) 1131, https://doi.org/10.1007/s11144-020-01724-9. doi: 10.1007/s11144-020-01724-9

    51. [51]

      G. Jiang, J. Fan, Y. Wan, J. Li, F. Pi, Chem. Eng. J. 480 (2024) 148216, https://doi.org/10.1016/j.cej.2023.148216. doi: 10.1016/j.cej.2023.148216

    52. [52]

      Z. Peng, Y. Zhou, C. Ji, J. Pardo, K. J. Mintz, R. R. Pandey, C. C. Chusuei, R. M. Graham, G. Yan, R. M. Leblanc, Nanomaterials 10 (8) (2020) 1560, https://doi.org/10.3390/nano10081560. doi: 10.3390/nano10081560

    53. [53]

      S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Nanoscale 5 (23) (2013) 11665. https://doi.org/10.1039/C3NR03893A. doi: 10.1039/C3NR03893A

    54. [54]

      K. Yaemsunthorn, A. Sysło, D. Krok-Janiszewska, W. Kasprzyk, K. Spilarewicz, M. Pacia, W. Thongpan, M. Kobielusz, W. Macyk, J. Ortyl, Carbon 234 (2025) 119967. https://doi.org/10.1016/j.carbon.2024.119967. doi: 10.1016/j.carbon.2024.119967

    55. [55]

      H. J. Yashwanth, S. R. Rondiya, N. Y. Dzade, S. D. Dhole, D. M. Phase, K. Hareesh, Vacuum 180 (2020) 109589, https://doi.org/10.1016/j.vacuum.2020.109589. doi: 10.1016/j.vacuum.2020.109589

    56. [56]

      X. Yang, L. Ai, J. Yu, G. I. Waterhouse, L. Sui, J. Ding, B. Zhang, X. Yong, S. Lu, Sci. Bull. 67 (14) (2022) 1450, https://doi.org/10.1016/j.scib.2022.06.013. doi: 10.1016/j.scib.2022.06.013

    57. [57]

      Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (11) (2023) 2207566. https://doi.org/10.1002/advs.202207566. doi: 10.1002/advs.202207566

    58. [58]

      R. Umami, F. A. Permatasari, D. A. Muyassiroh, A. S. Santika, C. D. Sundari, A. L. Ivansyah, T. Ogi, F. Iskandar, J. Mater. Chem. C 10 (4) (2022) 1394, https://doi.org/10.1039/D1TC04951H. doi: 10.1039/D1TC04951H

    59. [59]

      D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, J. Phys. Chem. Lett. 12 (37) (2021) 8939, https://doi.org/10.1021/acs.jpclett.1c02475. doi: 10.1021/acs.jpclett.1c02475

    60. [60]

      W. U. Khan, L. Qin, W. U. Khan, S. U. Khan, M. M. Hussain, F. Ahmed, S. Kamal, P. Zhou, ACS Appl. Nano Mater. 6 (19) (2023) 17838, https://doi.org/10.1021/acsanm.3c03131. doi: 10.1021/acsanm.3c03131

    61. [61]

      B. Kommula, S. Chakraborty, M. Banoo, R. S. Roy, S. Sil, A. Swarnkar, B. Rawat, K. Kailasam, U. K. Gautam, ACS Appl. Mater. Interfaces 16 (30) (2024) 39470, https://doi.org/10.1021/acsami.4c08635. doi: 10.1021/acsami.4c08635

    62. [62]

      L. Zdražil, Z. Baďura, M. Langer, S. Kalytchuk, D. Panáček, M. Scheibe, Š. Kment, H. Kmentová, M. A. Thottappali, E. Mohammadi, et al., Small 19 (32) (2023) 2206587, https://doi.org/10.1002/smll.202206587. doi: 10.1002/smll.202206587

    63. [63]

      W. Han, D. Li, X. Hu, W. Qin, H. Sun, S. Wang, X. Duan, Mater. Today Chem. 30 (2023) 101546, https://doi.org/10.1016/j.mtchem.2023.101546. doi: 10.1016/j.mtchem.2023.101546

    64. [64]

      H. Qin, L. Sun, S. Zou, A. Bian, Y. Cui, J. Hou, C. Lu, C. Li, F. Guo, W. Shi, Chem. Eng. J. 499 (2024) 156239, https://doi.org/10.1016/j.cej.2024.156239. doi: 10.1016/j.cej.2024.156239

    65. [65]

      H. Qin, K. Sun, P. Hao, H. Yuan, Y. Shen, A. Bian, Y. Cui, J. Hou, W. Shi, C. Li, et al., J. Catal. 435 (2024) 115579, https://doi.org/10.1016/j.jcat.2024.115579. doi: 10.1016/j.jcat.2024.115579

    66. [66]

      K. Niu, C. Ma, R. Dong, H. Liu, S. Yu, L. Xing, Nano Res. 17 (6) (2024) 4825, https://doi.org/10.1007/s12274-024-6451-6. doi: 10.1007/s12274-024-6451-6

    67. [67]

      L. Morbiato, L. Cardo, E. Sturabotti, P. Gobbo, G. Filippini, M. Prato, ACS Nano 19 (4) (2025) 4887, https://doi.org/10.1021/acsnano.4c16538. doi: 10.1021/acsnano.4c16538

    68. [68]

      D. Sarma, B. Majumdar, T. K. Sarma, ACS Sustain. Chem. Eng. 6 (12) (2018) 16573, https://doi.org/10.1021/acssuschemeng.8b03811. doi: 10.1021/acssuschemeng.8b03811

    69. [69]

      Q. Wang, J. Li, X. Tu, H. Liu, M. Shu, R. Si, C. T. Ferguson, K. Zhang, R. Li, Chem. Mater. 32 (2) (2020) 734, https://doi.org/10.1021/acs.chemmater.9b03708. doi: 10.1021/acs.chemmater.9b03708

    70. [70]

      T. Zhang, B. Huang, H. Huang, A. Yan, S. Lu, X. Qian, Chin. Chem. Lett. (2025) 110885, https://doi.org/10.1016/j.cclet.2025.110885. doi: 10.1016/j.cclet.2025.110885

    71. [71]

      W. Wu, Q. Zhang, R. Wang, Y. Zhao, Z. Li, H. Ning, Q. Zhao, Wiederrecht, G. P.; J. Qiu, M. Wu, ACS Catal. 8 (2) (2018) 747, https://doi.org/10.1021/acscatal.7b03423. doi: 10.1021/acscatal.7b03423

    72. [72]

      J. Yang, S. He, H. Liu, E. Jaatinen, E. Waclawik, J. Quan, S. Sarina, C. He, S. Huang, H. Zhu, et al., J. Mater. Chem. A 11 (9) (2023) 4751, https://doi.org/10.1039/D2TA09982A. doi: 10.1039/D2TA09982A

    73. [73]

      F. Tong, X. Liang, X. Bao, Z. Zheng, ACS Catal. 14 (15) (2024) 11425, https://doi.org/10.1021/acscatal.4c03566. doi: 10.1021/acscatal.4c03566

    74. [74]

      P. Ghosh, D. Bairagi, N. Hazra, S. Jana, A. Banerjee, ACS Appl. Nano Mater. 6 (19) (2023) 18100, https://doi.org/10.1021/acsanm.3c03380. doi: 10.1021/acsanm.3c03380

    75. [75]

      S. Bibi, N. Shakir, M. Sadiq, S. Sadiq, I. Ullah, Q. Khan, B. Bostan, M. Ismail, J. Mol. Struct. 1312 (2024) 138488, https://doi.org/10.1016/j.molstruc.2024.138488. doi: 10.1016/j.molstruc.2024.138488

    76. [76]

      J. Fang, T. Debnath, S. Bhattacharyya, M. Döblinger, J. Feldmann, J. K. Stolarczyk, Nat. Commun. 11 (1) (2020) 5179, https://doi.org/10.1038/s41467-020-18583-6. doi: 10.1038/s41467-020-18583-6

    77. [77]

      B. Martindale, G. Hutton, C. Caputo, S. Prantl, R. Godin, J. R. Durrant, E. Reisner, Angew. Chem. Int. Ed. 56 (23) (2017) 6459, https://doi.org/10.1002/anie.201700949. doi: 10.1002/anie.201700949

    78. [78]

      X. Ou, X. Chen, S. Zhao, Y. Shi, J. Zhang, M. Wu, A. J. Ragauskas, X. Song, Z. Zhang, Small 21 (6) (2025) 2408200, https://doi.org/10.1002/smll.202408200. doi: 10.1002/smll.202408200

    79. [79]

      Q. Zhang, Y. Zhang, H. Shi, H. Zhang, J. Zhao, Z. Zheng, H. Yang, P. Yang, Aggregate 5 (1) (2024) e424, https://doi.org/10.1002/agt2.424. doi: 10.1002/agt2.424

    80. [80]

      L. Jiang, S. Xie, H. Chen, J. Yang, X. Wang, W. Li, X. Peng, Z. Wu, H. Wang, J. Wang, et al., Appl. Catal. B: Environ. Energy 365 (2025) 124881, https://doi.org/10.1016/j.apcatb.2024.124881. doi: 10.1016/j.apcatb.2024.124881

    81. [81]

      X. Liu, Y. Wang, Y. Gu, W. Lu, Chem. Eng. J. 499 (2024) 156573, https://doi.org/10.1016/j.cej.2024.156573. doi: 10.1016/j.cej.2024.156573

    82. [82]

      Y. Zhou, E. Zahran, B. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, R. M. Leblanc, Appl. Catal. B: Environ. 248 (2019) 157, https://doi.org/10.1016/j.apcatb.2019.02.019. doi: 10.1016/j.apcatb.2019.02.019

    83. [83]

      Y. Bakier, H. M. El-Bery, Environ. Chem. Eng. 11 (6) (2023) 111493, https://doi.org/10.1016/j.jece.2023.111493. doi: 10.1016/j.jece.2023.111493

    84. [84]

      W. Han, H. Zhang, D. Li, W. Qin, X. Zhang, S. Wang, X. Duan, Appl. Catal. B: Environ. Energy 350 (2024) 123918, https://doi.org/10.1016/j.apcatb.2024.123918. doi: 10.1016/j.apcatb.2024.123918

    85. [85]

      N. Meng, M. Zhou, X. Zhang, L. Ma, S. Ding, W. Wang, Chem. Eng. J. 503 (2025) 158432, https://doi.org/10.1016/j.cej.2024.158432. doi: 10.1016/j.cej.2024.158432

    86. [86]

      M. Gu, D. Y. Lee, J. Mun, D. Kim, H. Cho, B. Kim, W. Kim, G. Lee, B. S. Kim, H. I. Kim, Appl. Catal. B: Environ. 312 (2022) 121379, https://doi.org/10.1016/j.apcatb.2022.121379. doi: 10.1016/j.apcatb.2022.121379

    87. [87]

      J. Wang, J, Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, et al., Nano Res. 17 (7) (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4. doi: 10.1007/s12274-024-6623-4

    88. [88]

      H. Li, C. Sun, M. Ali, F. Zhou, X. Zhang, D. R. MacFarlane, Angew. Chem. Int. Ed. 54 (29) (2015) 8420, https://doi.org/10.1002/anie.201501698. doi: 10.1002/anie.201501698

    89. [89]

      Z. Liu, B. Chen, M. Liu, H. Zou, C. Huang, Green Chem. 19 (6) (2017) 1494, https://doi.org/10.1039/C6GC03288E. doi: 10.1039/C6GC03288E

    90. [90]

      S. Liu, J. Shi, J. Jia, Y. Yang, S. Zhang, D. Yang, Y. Chen, S. Li, Z. Jiang, ACS Catal. 13 (21) (2023) 14233, https://doi.org/10.1021/acscatal.3c03180 doi: 10.1021/acscatal.3c03180

    91. [91]

      Z. Zhao, B. Pieber, M. Delbianco, ACS Catal. 12 (22) (2022) 13831, https://doi.org/10.1021/acscatal.2c04025. doi: 10.1021/acscatal.2c04025

    92. [92]

      C. Campalani, M. Durai, W. Leitner, A. Bordet, Green Chem. 27 (10) (2025) 2666, https://doi.org/10.1039/D4GC05468G. doi: 10.1039/D4GC05468G

    93. [93]

      D. Guo, J. Lei, D. Rong, T. Zhang, B. Zhang, Z. Tang, H. Shen, C. Deng, S. Qu, Adv. Sci. 9 (36) (2022) 2205106, https://doi.org/10.1002/advs.202205106. doi: 10.1002/advs.202205106

    94. [94]

      H. Wang, Q. Wang, Q. Wang, W. Dong, Y. Liu, Q. Hu, X. Song, S. Shuang, C. Dong, X. Gong, J. Clean. Prod. 411 (2023) 137337, https://doi.org/10.1016/j.jclepro.2023.137337. doi: 10.1016/j.jclepro.2023.137337

    95. [95]

      Gunture, T. Y. Lee, NPJ Clean Water 7 (1) (2024) 132, https://doi.org/10.1038/s41545-024-00426-2. doi: 10.1038/s41545-024-00426-2

    96. [96]

      Y. Xiao, Z. Xia, W. Hu, B. Liu, C. Lü, Small 20 (32) (2024), 2309893, http://doi.org/10.1002/smll.202309893. doi: 10.1002/smll.202309893

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  15
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-06-11
  • 接受日期:  2025-08-18
  • 修回日期:  2025-08-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章